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Abstract

A 2D distribution of microphytobenthic biomass is determined from a super+cial sediment
sampling on an exposed sandy shore. The distribution undergoes a very structured pattern, dis-
playing a few dense patches over a wide range of low density patches. We perform a statistical
analysis of this 2D patterns using statistical tools developed in the +eld of fractal theory. It is
shown that the patch pattern belongs to fractal and multifractal structures, and exhibits speci+c
power-law in the probability space, involving the appearance of a self-organized critical state.
To our knowledge, this is the +rst experimental study of self-organized criticality in benthic
ecology. Some theoretical consequences are outlined, and their practical applications to improve
our understanding of intertidal ecosystems structures and functions are discussed.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Nature appears to be intermittent, i.e., it is characterized by large ;uctuations
interspersed among periods of relative stasis [1–3]. At the broadest evolutionary scales,
adaptive radiations appear, in some cases, to occur in short bursts of evolutionary
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activity, a phenomenon know as punctuated equilibrium [4,5]. Extinction events ob-
served in the fossil records may be episodic at all scales, with relatively long periods
of stability alternating with short-lived extinction events [6]. Similarly, at the smallest
ecological scales, biomass and species are rarely dispersed uniformly [7–11]. Instead,
patchiness (also referred to as ‘spatial heterogeneity’ [12]) is the norm, and ecologi-
cal +eld studies and environmental monitoring programs must be designed accordingly
[13–17].
Because the issue of sampling (intermittent) patchily distributed populations cut

across all habitat and taxa, a central issue in both terrestrial and marine ecology is
thus to determine how space and spatial scales in;uence population and community
dynamics [18–20]. Theoretical studies have suggested that internal (biotic) properties of
individuals and populations interact to produce space–time complexity in homogeneous
environments [21,22]. Potentially, environmental complexity interacts with biotic pro-
cesses and in;uences spatial patterns [23,24]. Whatever that may be, we are confronted
with a crucial question: is intermittency intrinsic to the organization of ecological com-
munities and how to characterize patterns presenting structures at several, if not all,
scales?
A attempt to explain the origin of intermittent ;uctuations in nonequilibrium systems,

and referred to as “self-organized criticality” (SOC), proposed that many complex
systems naturally evolve to a critical state de+ned by the spontaneous emergence of
;uctuations across a broad range of scales without any +ne-tuning necessary from
outside the system [25,26]. Because of their intrinsic scaling properties, self-organized
structures can be described in terms of fractals objects. Following the pioneering studies
of Mandelbrot [27], fractal objects have become a familiar class of structures in almost
all areas of scienti+c knowledge. As previously discussed [28–31], diKerent scales are
necessarily related to diKerent aspects of structure, and fractal methods can be applied in
order to detect self-similar hierarchies in ecology. Such hierarchical scaling have been
observed, for instance, in coral reefs [32], from patch perimeter measures in deciduous
forests [33], vegetation patterns [34], landscapes [35,36], the structure of vertebrates
[37,38] and invertebrates movement pathways [39–41] as well as the distribution of
benthic [42,43] and planktonic organisms [10,11,44,45].
In benthic and more speci+cally intertidal ecology, many studies have been devoted

to study the interplay between abiotic processes and biotic community structure at dif-
ferent spatial scales [46–51]. Only a few focused on the quanti+cation of the scaling
(fractal) properties of these communities [41,42], and none have been confronted with
the crucial question related to the phenomenology of the organization of benthic com-
munities, and especially microphytobenthic communities that are at the core of benthic
primary production and the matter ;uxes between benthic and pelagic domains.
In the following, we +rst propose a brief state of the art in studies related to

self-organized criticality, in both physical and ecological +elds, and detailed their link
with fractal concepts (Section 2). We de+ne intertidal environment and microphyto-
benthic organisms, and present our sampling and experimental procedures in Section 3.
Section 4 presents our statistical analysis of microphytobenthos patches. Although our
results have implications for the functioning of the whole intertidal ecosystem, we are
more concerned with the kind of dynamical system that results from the process of
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biomass distribution. In particular, we show for the very +rst time that several pat-
terns in microphytobenthos distribution support the theory of self-organized criticality
[25,26]. We make three observations that show that the microphytobenthos patch pat-
tern is consistent with self-organized criticality: (i) a power-law distribution of the
number of microphytobenthos patches vs. patch spatial scale, (ii) a power-law dis-
tribution of patch frequency vs. patch concentration, and (iii) a discontinuity in the
plot of patch frequency vs. microphytobenthos patch concentration suggesting a critical
biomass. In Section 5 we discuss the consequences of our +ndings and we give some
+nal comments and directions for future developments.

2. Self-organized criticality

2.1. Characterizing criticality

Recent studies on the behavior of nonlinear systems far from equilibrium with
extended spatial and=or temporal degrees of freedom have shown that these systems
often spontaneously evolve towards a critical state, referred to as a “self-organized crit-
ical state” [25,26,52] de+ned by the spontaneous emergence of intermittent ;uctuations
across a broad range of spatial and temporal scales without any “+ne tuning” necessary
from outside the system. The system is organized in a well-de+ned way that is char-
acterized by the existence of order at all scales and where small perturbations evolve
creating objects of all sizes, hence the concept of intermittency introduced above. This
essential feature provides a physical explanation for some fractal objects and some
natural power laws as the one observed for the so-called 1=f noise [25,52].
The most widespread example of self-organized criticality is a pile of sand to which

grains are continually added [25,26]. Initially, when the pile is ;at there is little in-
teraction among the diKerent regions of the pile and adding a single grain will only
aKect a few other grains nearby. The system is in a subcritical state. As the pile grows
by adding grains of sand, avalanches of grains spill down the sides such that adding
a single grain can initiate a cascade aKecting many other grains. Eventually, the slope
of the pile grows until the “angle of repose” is reached. The pile reaches a critical
state and essentially does not get any steeper. Now, if grains are added avalanches
occur with a wide range of sizes. The critical state is de+ned by a stationary statis-
tical distribution of avalanches which propagate across all spatial and temporal scales
(only limited by the +nite size of the pile). Alternatively, the pile could be started
in a supercritical state by forming a vertical cylinder of sand. A supercritical pile is
highly unstable and is expected to collapse down to a critical state as grains are added.
Thus, one can think of the critical state as an attractor for the dynamics of the pile.

2.2. Power laws and self-organized criticality

The dynamical and structural properties of self-organized criticality can be charac-
terized through several scaling laws. In the speci+c case of the sand pile, the number
of grains N (d) falling a distance d at the same time step follows the power-law form
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N (d) ≈ d−D where D is a fractional quantity, the fractal dimension of the avalanches.
More generally, for a critical system, the distribution of ;uctuation sizes is described
by a power-law that writes:

F(s) ≈ s−D ; (1)

where s is the size of an “avalanche” and F(s) is the frequency of its occurrence. The
negative exponent of the distribution leads to many small events or ;uctuations punc-
tuated by progressively rarer large events, hence the notion of intermittency introduced
above. To estimate the fractal dimension D, the system in question is observed over a
period of time and the frequency of events of size s is recorded. In the sandpile case,
the events are avalanches of sand grains, and the size of an event is the number of
grains in a particular avalanche. Frequency is estimated as the number of events of
size s divided by the total number of events.
Self-organized criticality occurs in systems that build up stress and then release the

stress in intermittent pulses. This can be generally described by a power-law that states
that the probability of events with intensity I greater than a given threshold Ii follows:

Pr(I ¿ Ii) ≈ I−� ; (2)

where � is the scaling exponent describing the distribution.
Finally, we stress here that to estimate the scaling exponents D (Eq. (1)) and �

(Eq. (2)), we preferred linear regression on the log-transformed data to nonlinear
regression on the raw data because the residual error will be distributed as a quadratic
and the minimum error is guaranteed. This is not the case with nonlinear regression.
Finally, because an objective criterion is needed for deciding upon the appropriate
range of scales to include in the regression, we used the scales and the intensities
which maximized the coeLcient of determination and minimized the total sum of the
squared residuals for the regression [53].

2.3. Self-organized criticality in physical sciences

There are numerous studies devoted to the identi+cation and the characterization
of self-organized criticality in the physical sciences. A simple example is the stress
that builds up the earth’s crust and is released in earthquakes [54]. This is described
by the well-known Gutenberg–Richter law of geophysics that states that the number
of earthquakes N with energy E greater than a given threshold E0 scales following
Eq. (2) where the scaling exponent � is estimated as �=1:91 [55,56]. The earthquake
intensity distribution is thus “scale free” with no typical size of the intensities. Volcanic
activity, like that of earthquakes, is also intermittent, with events of all sizes. Using
acoustic sensors placed at a distance from the volcano and another placed nearer to
it, it has been shown that for both signals, the number of acoustic bursts follows
Eq. (2). While one signal was weaker than the other, they exhibit similar linear behavior
on logarithmic plots, with an exponent � ≈ 2:00 [57]. Volcanic activity is thus also a
self-organized critical phenomenon.
While the concept of sand pile initially emerged from a simple theoretical model

[25,26], it has been recovered in a wide variety of materials piles, including granular
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pile [58], real sand pile [59] and rice pile [60]. The avalanche phenomena, related to
self-organized criticality, observed in these laboratory studies have also found applica-
tions to explain landscape formation in nature (regarded as a granular pile subjected
to erosion by water) [61,62], Himalayan avalanches [63], sediment deposition in the
ocean (the sediment basically cascades along the continental slopes and forms layered
structures at the bottom of the ocean) [64], the formation of river networks [65,66]
and the dynamics of atmospheric ;ows [67].
Amazingly, self-organized criticality—as witnessed by Eqs. (1) and (2)—is not

con+ned to the Earth, but can be found elsewhere in the universe. For instance,
pulsar glitches follow the Gutenberg–Richter law, and have thus been referred to as
“starquakes” [68] as well as X-ray intensity from solar ;ares [69].

2.4. Self-organized criticality in ecological sciences

Evidences for self-organized criticality in ecological sciences are still scarce, but
nevertheless include a wide spectrum of ecological +elds ranging from tree-fall gap
formation in tropical rainforests [70] and bird population dynamics [71], to models of
ecosystem [72] and evolution [73,74].
In particular, data sets related to the introduced Hawaiian avifauna support a sce-

nario in which island communities build up to a critical number of species, above which
avalanches of extinction occur [71]. The avalanches of extinction observed in the fossil
record [6] may then be indicative of a self-organized critical state, as suggested from
simple coevolutionary models [73,75,76]. In the case of coevolving species, one may
note that exact analytical solutions have been given, demonstrating that extinction cas-
cades following the distributions given in Eqs. (1) and (2) can emerge spontaneously
in simple models of coevolution [76,77]. More generally, these results suggest that eco-
logical communities are not characterized by a well de+ned equilibrium, but rather by
a detailed balance which is minimally stable to perturbations such that the introduction
of species can trigger extinction cascades.
Numerical perturbation experiments (i.e., an addition of individuals to a steady state)

conducted in the framework of a very simple ecosystem model known as the “game
of life” [72] led to power-laws resulting from the distributions of avalanches of size
s; F(s), i.e., F(s) ≈ s−D1 , and the distribution of the duration of perturbations F(T ),
i.e., F(t) ≈ t−D2 , with D1 ≈ 1:4 and D2 ≈ 1:6, respectively. Despite its extreme sim-
plicity, this model has subsequently been validated via Monte Carlo simulation studies
[78], and extended to a wide variety of ecosystems situations [79,80]. Among them,
a simple model of tree growth and competition for resources in a tropical rainforest
led to scaling properties that cannot be distinguished from the one observed from a
real forest. Eq. (1) has thus been veri+ed over a wide range of scales and leads to
fractal dimensions D ≈ 2:01 and 2.06 for the real and modeled forests, respectively
[81–83].
Finally, one may note that in coevolutionary models, as well as in the “game of life”,

the dynamics are generated by species interactions, or more generally perturbations, as
opposed to transfers of momentum in physical systems.
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3. Sampling microphytobenthos patches pattern

3.1. Intertidal environment and microphytobenthos

The intertidal environment is the part of the littoral zone that is directly in;uenced
by an alternance of emersion=immersion phases related to the tidal cycle (Fig. 1).
More speci+cally, the intertidal zone (B) is bounded between the supralittoral zone
(A) and the infralittoral zone (B) that are never immersed nor emersed, respectively.
The intertidal zone must nevertheless be regarded as a dynamic area, with boundaries
that ;uctuate in time. Its upper bound is found between the upper limits reached by
the tidal ;ow at high tide in spring and neap tides. On the opposite, its lower bound
oscillates between the lower limits reached by the tidal ;ow at low tide in spring and
neap tides. Finally, note that a wide variety of sediment covers, ranging from rocky
to sandy and muddy substrates, can be observed in the intertidal zone which can then
allow the development of many kind of benthic ecosystems [84].
Microphytobenthos are photosynthetic cells living within the surface layers of coastal

sediments. They provide as much as 50% of the carbon +xed in some coastal systems
and have importance as a food resource [85] and as “ecosystem architects” altering
the erosion potential of coastal sediments [86–88]. The majority of the cells belong to
the Bacillariophyceae or diatoms, that can be found in the nearshore sediments, either
attached to sand grains or rocks, or living on the mud [89–91]. Diatoms are usually
robust with heavily silici+ed frustules (e.g. Caloneis sp., Diploneis sp.; Fig. 2). Some
of them are motile, they secrete mucus that allows them to glide freely on the sediment.
In particular, vertical migration can be easily observed on both sandy and muddy ;ats

Fig. 1. Schematic zonation of a hydrodynamically exposed sandy ;at in the Eastern English Channel. The
intertidal zone (B) is bounded between supra-(A) and infralittoral (C) zones. The upper bound of the
intertidal zone is bounded between the upper limits reached by the tidal ;ow at high tide in spring and neap
tides, MHWS and MHWN, respectively. The lower bound is bounded between the lower limits reached by
the tidal ;ow at low tide in spring and neap tides, MLWN and MLWS, respectively.
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Fig. 2. Electron microscopy photographs illustrating the variety of shape and size occurring in several genera
of microphytobenthos diatoms. A: Trybionella; B: Gyrosigma; C: Caloneis; D: Amphora; E: Nitzchia; F:
Diploneis; G: Brachysira; H: Amphora.
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and exhibits diel rhythms. Microphytobenthos cells then move upwards to the surface
when the sediment is exposed at low tide and migrate downwards before it is ;ooded
[92]. One must nevertheless note here that these migrations occur at low tide, but
only when low tides occur during the day [93]. Recent results have revealed that the
high diversity and rapid turnover of microphytobenthos populations make them ideal
as model system for the study of ecological theory (such as diversity vs. productivity
issues) and aspects of ecosystem change (e.g. global warming) [94].

3.2. Study site, living material collection and conservation

The study site chose, an intertidal ;at of sand in Wimereux (France) was typi-
cal of the hydrodynamically exposed sandy beach habitats that dominate the littoral
zone along the French coast of the Eastern English Channel. We chose an area in
the upper intertidal zone without elevational gradient and without sharp topographical
features as ripple marks, high pinnacles or deep surge channels. The speci+c study
plot (50◦45′896 N; 1◦36′364 E) was selected because it is characterized by homoge-
neous medium size sand (200–250 �m, modal size), weak biomass, productivity and
production of both phyto- and zoobenthic organisms [95], then an a priori homoge-
neous distribution of microphytobenthos biomass, and was typical of the surrounding
sandy habitat. Air temperature at the site range from about 1◦C–10◦C in the winter
to highs of about 10–25◦C in the summer [96]. Water temperature vary from 5◦C to
approximately 18◦C depending on the season. Salinity is usually about 31( but can
also vary with the season, being lower in late winter and early spring and higher in
late summer and fall [96].
For estimated microphytobenthos patch pattern, we focused on scales smaller than

1 m2, that is usually the +nest grain considered in both landscape ecology [97] and
intertidal benthic ecology [50,98]. A rigid 1 m2 aluminum quadrat of the design shown
in Fig. 3 was used, and 225 equidistant samples were collected every 6:67 cm using
1:9 cm2 plastic cores. The cores were pushed into the sediment down to a depth of
1 cm, where most of the active cells are concentrated [99–103], carefully removed
and then stored in a cool box, brought back to the laboratory and stored in the dark
at −20◦C.

3.3. Measurements of microphytobenthos biomass

Chlorophyll a is usually used as an index for primary producers biomass [98,
104–106]. In the laboratory, sections of sediment were placed in 8 ml acetone and
pigments were extracted for 4 h in the dark at 4◦ [107]. After extraction, samples were
centrifuged at 4000 rpm for 15 min. Chlorophyll a concentrations (Chl.a, mg) in the
supernatant were determined by spectrophotometry following the equation given by

Chl:a= V [(11:64(OD663 − OD750)− 2:16(OD645 − OD750)

+0:1(OD630 − OD750)] ; (3)
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Fig. 3. Quadrat design for microphytobenthos biomass estimation. The resolution and the extent are 1 m and
6:67 cm, respectively.

Where V is the extraction volume (1) and OD� is the optical density of the supernatant
at wavelength � (nm) [108]. Chlorophyll a concentrations estimated in the supernatant
have subsequently been expressed in terms of chlorophyll a per surface unit (�g m−2)
taking into account the 1:9 cm2 surface of the sampling unit.

4. Microphytobenthos patches and self-organized criticality

4.1. Statistical analysis of microphytoplankton patches

Microphytobenthos biomass exhibits a very intermittent behavior, where sharp ;uc-
tuations occurring locally are clearly visible (Fig. 4). Results of descriptive analy-
sis, including skewness and kurtosis estimates, show that the 225 microphytobenthos
biomass estimates are obviously not normally distributed (Kolmogorov–Smirnov test,
p¡ 0:01). Their frequency distribution rather exhibits a positively skewed behavior
(G1 = 0:60), re;ecting a distribution characterized by a few dense patches and a wide
range of low density patches. Finally, the positive kurtosis shows a distribution that is
peakier than expected in the case of normality (G2 = 1:83).
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Fig. 4. Two-dimensional distribution of microphytobenthos chlorophyll a content in our 100× 100 cm sam-
pling area. The greener the contour area the higher the chlorophyll concentration. The maximum gradient
(double arrow) is a 12 times change over 13:34 cm, i.e. two times the resolution of our sampling.

More speci+cally, microphytobenthos biomass is bounded between 1.90 and
27:15 mg m−2, i.e., 10:79 ± 4:15 mg m−2 ( Vx ± SD). These biomass estimates are low
when compared to the biomass estimates of microphytobenthos taken from biologically
rich and active muddy ;ats (i.e., bounded between 45 and 110 mg m−2) [95]. How-
ever, chlorophyll a concentrations estimated here on a sandy ;at are signi+cantly higher
(Wilcoxon–Mann–Whitney U -test, p¡ 0:01) than microphytobenthos biomass esti-
mated at the same spot 1 year earlier, 25 September 2000 (2:75±0:88 mg m−2; Vx±SD).
This can be thought as a consequence of the autumn bloom (i.e., a period of growth
of phytoplankton populations) that occurred in th coastal waters of the Eastern English
Channel. Indeed, over the same period, chlorophyll a concentrations were estimated as
10:72± 3:29 �g 1−1 ( Vx ± SD) in the shallow water moving onto or oK of the investi-
gated sandy ;at and 8:33± 3:52�g 1−1 ( Vx± SD) in the adjacent coastal water masses
(Leterme and Seuront, unpublished data).

4.2. Self-organized criticality @ngerprints in microphytobenthos patch pattern

A precise knowledge of the distribution of organisms is of fundamental importance in
understanding the relationships between organisms and the subsequent ;uxes of matter
[109]. Generally speaking, the distribution of resources is a prime interest for higher
trophic consumers, as recently numerically investigated in marine systems [110,111].
Benthic organisms especially represent the link between benthic and pelagic ecosys-
tems and then play a fundamental role in marine ecosystem functioning [112]. More
speci+cally, food availability changes depending on the dimension [11]. Low fractal
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Fig. 5. Two-dimensional distributions of microphytobenthos chlorophyll a content, where patch concentration
C has been discretized using critical patch concentration Ci such as C¿Ci with Ci ranging from 1.9 to
26:6 mg Chl.a m−2 (with 0:95 mg m−2 increments). Black areas indicate locations where C¿Ci .

dimension means a smooth and predictable distribution of particles gathered in small
numbers of patches. High dimensions means rough, fragmented, space-+lling and less
predictable distribution. Therefore, when a predator can remotely detect its surround-
ings, prey distributions with low dimension should be more eLcient. In contrast, when
a predator has no detection ability, prey distributions with high dimension should be
relatively better, because available food quantity (or encounter rate) becomes propor-
tional to the searched volume as fractal dimension increases [11]. These statements
even become more crucial when considering the widespread behavioral adaptation of
consumers to food concentration [110,113,114]. As a consequence, the quanti+cation
of the spatial distribution of microphytobenthos patches at diKerent concentration is
critical to our understanding of intertidal communities structures and functions.
Fig. 5 shows the distribution of microphytobenthos patches, where patch concen-

tration C has been discretized using critical patch concentration Ci such as C¿Ci

with Ci ranging from 1.9 to 26:6 mg Chl:a m−2 (with 0:95 mg m−2 increments). In
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each of the 22 patch patterns investigated, patches such as C¿Ci are shown as black
dots. We subsequently quanti+ed the distribution of these categorized patches rewriting
Eq. (1) as

Fi(s) ≈ s−D1 ; (4)

where Fi(s) is the frequency of occurrence of patches of concentration Ci, and Di

is the related fractal dimension. To estimate the fractal dimensions Di of the patch
patterns the pictures have been transformed into a binary matrix. A value 1 has been
assigned to black sites, and 0 to white ones. The occupied boxes having sizes be-
tween 1 × 2 (or 2 × 1) and 7 × 7, in plot units. The system has been covered by
rectangular and square boxes in both directions, and all integer box sizes s have been
used. The whole plot has size 15 × 15 in plot units, and each pixel represents a
surface of 6:67 × 6:67 cm in the +eld. Fig. 6 shows the results. The power-laws re-
lating the frequency of occurrence of patches of concentration Ci and the box size s
(Eq. (4)) are clearly linear over the whole range of available scales, with coeLcient of
determination r2 ranging from 0.93 to 0.99 (Fig. 6A). The existence of self-similar
(i.e., scaling) behavior here is suggestive of self-organization near a phase transi-
tion, where large-scale correlations can emerge. In a equilibrium state, correlations
are limited to local scales [115]. Phytobenthos patches, which at +rst appears feature-
less, are actually remarkably correlated, whatever their concentrations. However, the
fractal dimensions Di (Fig. 6B) lead to specify these results. Low density patches (i.e.,
C6 6:65 mg Chl:a m−2) are characterized by high fractal dimensions, Di=1:89±0:01.
Such high dimensions (the maximum values that Di can reach is Di =2:00) character-
izes very complex processes where short-range, local variability is highly developed and
tends to obfuscate long-range trends; the variable is more evenly or regularly distributed
(i.e., less structured) in space. In other words, this indicates that the variation within
a sampling unit is equal to the variation among sampling units [53]. On the opposite,
fractal dimensions related to high density patches (i.e., C¿ 22:80 mg Chl:a m−2) are
very low Di = 1:03 ± 0:02, cannot be statistically distinguished (p¡ 0:05) from the
lowest Di value (i.e., Di=1). This indicates that the variability of the variable is domi-
nated by long-range eKects, and remains the so-called aggregated clumped point pattern
(Li, 2000). Finally, patches corresponding to intermediate chlorophyll a concentrations
(7:606C6 21:85 mg Chl:a m−2) are characterized by decreasing fractal dimensions
Di from Di = 1:85 to 1.07. Following the behavioral statement introduced above, and
the demonstrated sensorial abilities of intertidal organisms [116,117], in the speci+c
case studied here, microphytobenthos grazers will derive maximum bene+t from high
concentration patches. An approximate randomization procedure [118] has been used
to test the null hypothesis that the number of patches was not related to their size. The
probability that the observed correlation between patch number and patch intensity was

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Fig. 6. Box-counting carried over the sets of Fig 5. Fractal dimensions Di are estimated from the best linear
+t of the log–log plot of the frequency of occurrence of patches of concentration Ci; Fi(s), vs. the size of
the boxes s. Results shown here correspond to three critical patch concentrations Ci; C ¿ 5:7; C ¿ 13:3 and
C¿ 24:7 mg Chl.a m−2 (A). The nonlinear distribution of the fractal dimensions Di (B), plotted against
critical concentrations Ci , indicate the multifractal character of microphytobenthos patchiness.



L. Seuront, N. Spilmont / Physica A 313 (2002) 513–539 525



526 L. Seuront, N. Spilmont / Physica A 313 (2002) 513–539

due to chance was p= 0:0024 (of 10 000 randomizations, 24 resulted in a correlation
greater than or equal to the observed correlation).
One must note here that the distribution of the fractal dimensions Di (Eq. (3);

Fig. 6B) is reminiscent of the spectrum of the correlation dimensions D(q) [119].
Even if we agree that the nonlinear behavior shown in Fig. 6B is indicative of multi-
fractality in our data [10,30], we did not use the standard multifractal framework for
both computational and conceptual reasons. Let us recall that in the speci+c framework
of correlation dimensions D(q), the fractal dimension D introduced in Eq. (1) must be
rewritten as

D = D(0) = lim
s→0

(
log[F(s)]
log(s)

)
: (5)

More generally, the dimensions D(q) are written as

D(q) = lim
s→0

(
1

q− 1
log[X (q)]
log(s)

)
; (6)

where X (q)=
∑N (l)

i=1 pq
i . The statistical order of moments q are de+ned as −∞¡q¡+

∞, and the probability of every ith box pi can be arbitrarily de+ned over the set, with
the only requirement being the normalization:

∑N (l)
i=1 pi = 1. From Eqs. (5) and (6)

it is easily seen that estimates of D and D(q) require estimates of their asymptotic
behaviors when s → 0. However, these behavior cannot be statistically investigated nor
tested in the present work because of the small range of scales, and then the weak
number of data points, available in Fig. 6A. This is the reason why we generalize Eq.
(1) and propose Eq. (4). Moreover, we claim here that the framework related to the
multifractal framework, especially the statistical order of moments q and the exponent
of singularity � used in the x-axis of the spectrum of the correlation dimensions D(q)
and the spectrum of singularities f(�) [120,121] are far from intuitively comprehensive
for ecologists. This last statement represents a major limitation to the spreading of
scienti+c knowledge between +elds as diKerent as nonlinear dynamics and benthic
ecology, and then an intrinsic limitation to the progress of the actual scienti+c thought
process [122]. On the opposite, the proposed multifractal spectrum of the dimensions Di

can be directly interpreted in terms of ecological processes because fractal dimensions
are directly plotted against biomass which is the most fundamental measure in ecology.
Finally, we claim that the validity of our analyses is fully ensured by the highly
signi+cant (p¡ 0:01) linear behaviors shown from Eq. (4) for all the values of patch
concentrations investigated.
In this +nal section, we present additional results that help to corroborate the con-

jecture that microphytobenthos patches are actually a living microscale system with
critical dynamics. Fig. 7 shows the log–log plot of the probability of microphytoben-
thos patches with a concentration in chlorophyll a C greater than a given threshold Ci

ranging from 1.9 to 26:6 mg Chl:a m−2 (with 0:95 mg m−2 increments). On the basis
of the objective criteria introduced in Section 2, we found a clear scaling behavior
for patch concentration C such as C¿ 11:40 mg Chl:a m−2 with the scaling exponent
� = 5:31, i.e., Pr(C¿Ci) ≈ C−5:31 (r2 = 0:99). Using an approximate randomization
test, the probability that the observed power-law relationship between the number of
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Fig. 7. Log–log plot of the probability of microphytobenthos patches with a concentration in chlorophyll a; C,
greater than a given threshold C0 ranging from 1.9 to 26:6 mg Chl.a m−2 (with 0:95 mg m−2 increments).
The linear behavior observed above a critical biomass C¿ 11:40 mg Chl.a m−2 (arrow) is a +ngerprint for
self-organized criticality.

patches and their intensity was due to chance was p=0:001, i.e., over 10000 random-
izations, 10 resulted in a correlation greater than or equal to the observed correlation.
The fact that events greater than 11:40 mg Chl:a m−2 do not follow the same law
than smaller events indicates that there is something special about these events. In
particular, the smooth transition from low to high concentration patches observed in
Fig. 7 indicates a scenario in which microphytobenthos community build up to a critical
biomass, above which “avalanches” of patches occur. In other words, the microphy-
tobenthos community investigated here can be regarded as being in a subcritical state
for low concentration patches. On the opposite, patches of higher concentration (i.e.,
C¿ 11:40 mg Chl:a m−2) characterized by a power-law behavior are in a critical state,
resulting in a dynamic balance as the sand pile.
In particular, we stress that the decrease in the number of patches above a critical

biomass observed in Fig. 7 suggests that the development of the patches are struc-
tured by con;icting constraints. In the case of the sandpile model, the constraints are
gravity which acts to lower the height of the pile and addition of sand grains which
raises the height of the pile. The structure of the pile emerges from the interaction of
these forces. It is a salient issue to realize that, although gravity acts uniformly on all
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grains in the pile, the probability of an avalanche is not spatially uniform across the
pile. Some areas of the pile will have steeper slopes and thus, a higher probability of
sliding. Each avalanche changes the spatial pattern of slopes and thereby aKects the
size of subsequent avalanches, which in turn determine the structure of the pile yet
again. It is this pattern of long-range correlations among avalanches that is the key to
understanding self-organized criticality. We will outline hereafter the constraints, and
there potential eKects, that act on the structure and dynamics of a microphytobenthic
assemblage. In the case of microphytobenthos biomass, the microscale distribution of
patches is the result of both endogenous (e.g. microphytobenthos growth, migration
and death) and exogenous processes (e.g. tides, hydrodynamism, sediment quality, in-
terspeci+c and intraspeci+c competition for nutrient, grazing) that can act to decrease
and=or increase the microphytobenthos biomass. As illustrated in the sandpile model,
these constraints do not act uniformly over the whole spatial domain. For instance,
biomass losses related to grazing are dependent on both the spatial distribution and
foraging abilities of predators [116,117]. Growth and death are dependent on nutrient
and light availability that is also a function of the burying depth of microphytobenthos
cells, the density and the spatial distribution of the sediment and the duration of the
emersion. The microphytobenthic community at the sediment surface may be disturbed
by turbulence and shear stress generated by tidal currents or wind-waves and lead
to microphytobenthos cells load in the water column [98]. The degree of disturbance
depends on the interplay of a number of factors including sediment type, stability of
the sediment surface, mean water depth, tidal height, magnitude of tidal currents, wave
height, and macrofaunal abundance and activity. In particular, resuspension processes
occur during immersion and lead to biomass losses for the microphytobenthic system.
On the opposite, resettling of cells occurring at the beginning of emersion can be
regarded as playing a major role in the observed patch pattern. It has thus been
shown that the distribution of biotic particles (i.e. phytoplankton cells and resuspended
microphytobenthos cells) are very patchy in turbulent coastal waters as shown in
Fig. 8 [10,44,45,123]. The patch pattern identi+ed from analysis of the chlorophyll
a content in the +rst centimeter of sediment may then be a indirect consequence of the
patchiness of chlorophyll a suspended in the water column; see the similarity between
Figs. 4 and 8.
These constraints, acting quite obviously to increase and=or decrease microphytoben-

thos biomass, result in a dynamic balance as in the sand pile model. However, the
cause of patchiness, and in particular the self-organized criticality observed in patch
pattern are less clear. Let us illustrate here a potential mechanism for patch forma-
tion, with speci+c reference to the critical biomass observed in the microphytobenthos
patch pattern. A candidate mechanism for patchiness is competition among species.
If competition is a driving force in structuring microphytobenthos community, then
the important dynamics would be observed in the niche space occupied by diKerent
species [124–126]. Competitive pressure would be expected to be high in regions of
niche space where species are densely packed, as would happen, for instance, when a
number of phytoplankton species share the same food resource [127,128]. It is possible
that, like steep region of the sandpile, species occupying dense regions of niche space
(i.e., C¿ 11:40) are subject to higher extinction probabilities, and then reduce the
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Fig. 8. A two-dimensional simulation of phytoplankton distribution following the parameterization and the
simulation methods described in Ref. [11]. The redder the contour area the higher the phytoplankton con-
centration. Note the similarity between this pattern and the microphytobenthos patchiness shown in Fig. 4,
especially the sharp gradients (double arrows) occurring between high- and low-density areas.

probability of high density patches. The loss of species would change the distribution
of species in niche space and, in turn, change the probability of extinction and patches,
much like the dynamics of the sand pile model. The system is in a critical state. In
contrast, species occupying sparse regions of the niche space (i.e., C6 11:40) are sub-
ject to weaker competition pressure and extinction probabilities. The system is then in
a more stable, or subcritical state, and do not exhibit any +ngerprints of self-organized
criticality.

5. Discussion and concluding remarks

Let us summarize here the main results of this paper, and brie;y discuss their
potential implications. We have presented for the very +rst time empirical evidence for
a strong patchiness in microphytobenthos biomass from a microscale two-dimensional
sampling. It has been shown that the microphytobenthos patch pattern exhibits some +n-
gerprints for self-organized criticality, i.e., scaling properties of patch intensity vs. spa-
tial scales and patch probability vs. patch intensity. In particular, the results presented
here have several potential implications on our understanding of structures and func-
tions in intertidal benthic ecosystems. For instance, does the observed self-organized
criticality in microphytobenthos patch patterns have any consequences on microphyto-
benthos biomass, or on the subsequent primary production estimates?
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In order to address these questions more thoroughly, we conducted a survey of all
papers reporting microphytobenthos biomass and=or production estimates that appeared
from 1968 and 2000. We then gathered the minimum and maximum chlorophyll con-
tents and production rates observed in the sediment from a wide variety of intertidal
environments for time scales ranging from 0.5 to 57 months. These chlorophyll con-
tents have subsequently been normalized by the thickness of the sediment samples.
Table 1 shows the ratios rb and rprod of normalized minimum and maximum values
of chlorophyll contents and production rates, respectively. Comparisons of the data
gathered from our literature survey with our results lead to three major conclusions.
First, comparisons between the chlorophyll contents estimated in the present study

from sediment samples of 1 cm thickness and the normalized chlorophyll contents from
our literature survey (data not shown) indicate the low density of microphytobenthos
biomass estimated from our 225 samples. Indeed, 80% and 83% of the minimum and
maximum normalized chlorophyll contents taken from the literature survey are larger
than the minimum and maximum values estimated in the present work. Sandy intertidal
environments are generally not considered as highly concentrated in microphytobenthos
nor very productive, and the absolute measures of biomass per surface unit reported
here (bounded between 1.9 and 27:15 mg Chl m−2) are indeed not very dense. These
results, together with the strong photosynthetic active radiation (PAR) and the satu-
rating productive properties of microphytobenthic organisms observed during the sam-
pling experiment (spilmont, Davoult, and MignWe, unpublished data) [129], nevertheless
suggest that microphytobenthos cells accumulated in the +rst centimeter of sediment
are highly productive.
Second, semi-annual and annual variability in sediment chlorophyll a contents re-

ported in Table 1 and evaluated as rb; rb ∈ [2.10–300.00], are relatively weak when
compared to the variability estimated from our single, localized sampling where rb =
14:29. Indeed, 49% of the rb values taken from our literature survey are smaller than
the rb estimated from our sampling. These data suggest that the error in sampling might
account for much of the variation in chlorophyll reported in the seasonal and annual
studies summarized in Table 1, particularly when the microphytobenthos has been
sampled with relatively few and small cores as it is usually the case [130]. It is then
doubtful that a (small) +nite number of samples (e.g. 5 and 6, as in Refs. [130,131],
respectively) can be representative of a microphytobenthos population. Alternatively,
an appropriate parameterization of microphytobenthos patchiness, as illustrated here by
self-organized criticality +ngerprints can provide an eLcient framework to infer patch
pattern from a limited number of samples.
Let us +nally note that the previously demonstrated patchiness may also have salient

implications on microphytobenthos primary production. Basically stating that primary
production is a linear function of chlorophyll content [132], it can be thought that the
observed variability in microphytobenthos biomass (i.e. rb, see above) will be directly
re;ected in primary production estimates, leading to a ratio rprod = 14:29 between
minimum and maximum production. This values is greater than 32% of the rprod
values gathered in Table 2, and that characterize semi-annual and annual variability in
primary production by microphytobenthos. The impact of microphytobenthos patchiness
on primary production estimates can even be sharpened considering the combination of
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Table 1
Temporal variability in sediment chlorophyll content, ordered by thickness of sediment sample and experiment
duration, and expressed as the ratio rb between maximum and minimum chlorophyll contents, a wide variety
of intertidal environments

Location Thickness (nm) Biomass, r� Duration Source
(months)

German Wadden Sea, Germany 1 300.00 3 [139]
Danish Wadden Sea, Denmark 45.00 4 [139]
Westershelde estuary, The Netherlands 60.00 12 [138]
Westershelde estuary, The Netherlands 90.00 12 [138]

San Antonio Bay, Texas, USA 2 15.00 9 [141]
North Inlet Estuary, South Carolina, USA 3.67 12 [140]

Bay of Brest, France 3 11.3 10 [131]
Ems Estuary, The Netherlands 5 7.67 6 [146]
San Antonio Bay, Texas, USA 18.00 9 [141]
Graveline Bay, Mississippi, USA 11.29 11 [150]
Mugu Lagoon, California, USA 9.76 14 [144]
Dour duK Estuary, France 6.19 17 [143]
Dona Paula Bay, India 15.00 17 [151]
North Inlet Estuary, South Carolina, USA 5.50 19 [149]
Morbihan Bay, Karguelen Island, France 28.03 24 [152]
Ems Estuary, The Netherlands 112.00 26 [147]
Laholm Bay, Sweden 11.25 33 [145]
Ems Estuary, The Netherlands 42.00 35 [148]
Baie de Morlaix, France 21.52 39 [142]

Marennes-OlWeron Bay, France 10 4.00 0.5 [168]
Marennes-OlWeron Bay, France 2.53 0.5 [168]
Chukchi Sea, Alaska USA 3.20 7 [153]
San Antonio Bay, Texas, USA 18.67 9 [141]
Potter Pond Lagoon, Rhodes Island, USA 46.00 12 [159]
Delaware Estuary, Delaware, USA 2.10 12 [161]
Netrats Bay, Oregon, USA 31.50 12 [155]
Firth of Lorne, Scotland, UK 23.00 12 [165]
Long Island Sound, New York, USA 112.50 13 [160]
Dutch Wadden Sea, The Netherlands 22.91 14 [166]
Ria de Arosa, Spain 3.43 14 [157]
Ria de Arosa, Spain 3.50 14 [157]
Boston Harbor, Massachusetts, USA 6.60 14 [158]
Chesapeake Bay, Virginia, USA 13.00 15 [162]
Peel-Harvey Estuary, Australia 18.67 16 [163]
La Jolla, California, USA 4.20 20 [167]
Bay of Piran, Slovenia 2.78 21 [164]
Dutch Wadden Sea, The Netherlands 4.36 23 [99]
Golfe de Fos, France 75.00 28 [156]
Lake Gravelingen, The Netherlands 20.50 47 [154]
Dutch Wadden Sea, The Netherlands 14.00 57 [99]

Ems Estuary, The Netherlands 20 49.00 10 [90]
Bussards Bay, Massachussets, USA 4.25 11 [170]
Vostok Bay, Russia 3.91 13 [169]
Loch Ewe, Scotland, UK 192.00 22 [171]

Western English Channel, France 100 3.31 2 [131]

Eastern English Channel, France 10 14.29 0.001 Present study
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Table 2
Temporal variability in gross primary production by microphytobenthos in sediment, ordered by experiment
duration and expressed as the ratio rprod between maximum and minimum production rates in a wide variety
of intertidal environments

Location Production, rprod Duration Source
(months)

Marennes-OlWeron Bay, France 17.50 0.5 [168]
Smalandshavet, Denmark 110.00 6 [178]
Oresund, Denmark 36.67 7 [177]
Chukchi Sea, Alaska, USA 11.40 7 [153]
San Antonio Bay, Texas, USA 11.00 8 [141]
San Antonio Bay, Texas, USA 86.00 8 [141]
Graveline Bay, Mississippi, USA 11.20 11 [150]
Westershelde estuary, The Netherlands 150.00 12 [130]
Netarts Bay, Oregon, USA 17.60 12 [155]
Ythan Estuary, Scotland, UK 11.50 12 [172]
Ythan Estuary, Scotland, UK 25.11 12 [172]
River Lynther, England, UK 23.00 12 [173]
Block Island Sound, Rhodes Island, USA 164.00 12 [175]
Bolsa Bay, California, USA 8.33 12 [176]
Duplin River Marsh, Georgia 578.00 12 [180]
Tijuana Estuary, California, USA 51.57 13 [179]
Mugu Lagoon, California, USA 4.50 14 [144]
Dutch Wadden Sea, The Netherlands 18.40 14 [166]
Ria de Arosa, Spain 14.67 14 [157]
Chesapeake Bay, Virginia, USA 34.00 15 [162]
Long Island Sound, Connecticut, USA 8.25 18 [100]
Bay of Piran, Slovenia 23.00 19 [164]
North Inlet Estuary, South Carolina, USA 9.47 19 [149]
La Jolla, California, USA 365.00 23 [167]
Sippewissett Marsh, Massachussets, USA 17.00 26 [174]
Ems Estuary, The Netherlands 11.50 26 [147]
Ems Estuary, The Netherlands 2.28 26 [147]
Golfe de Fos, France 21.00 28 [156]
Laholm Bay, Sweden 57.80 31 [145]
Lake Gremvelingen, The Netherlands 58.00 47 [154]
Dutch Wadden Sea, The Netherlands 74.67 57 [99]

microscale vertical distribution of microphytobenthos biomass [133,134], the eKect of
sediment properties on light penetration (and then availability to primary producers) in
the sediment [130,135,136] and the physiological properties of microphytobenthos cells
[130] that can be species speci+c [137]. This question will be studied more thoroughly
elsewhere, but already represents a promising area of future research in marine sciences.
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