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Abstract

In this paper a new simulation platform, “Mobidyc”, dedicated to non-computer expert end-users,
is used to illustrate the advantages of such platforms for simulating population dynamics in space and
time. Using dedicated and open-source platforms probably represents a necessary step to guarantee the
readability and comparison between models and/or scenarios. The “Mobidyc” platform is specifically
dedicated to population dynamics with 2D-discrete spatial representation. We show first how to build
easily stage-structured population dynamics models, on the basis of an experimental parameterization
of the population dynamic of the copepodEurytemora affinis, the most dominant species in estuaries
of the Northern hemisphere. We subsequently focus on the role of spatial representation and the
possible sources of heterogeneities in copepod populations. The sources generating patterns in our
examples are strictly endogenous to the population and individual characteristics. They are generated
by the random walk of individual at local scale and the demographic processes (birth, metamorphosis
and mortality) at the population scale in the absence of any externally imposed pattern.

The large spatio-temporal data sets of abundances of total population are analysed statistically.
Spatial and temporal patterns are investigated using models and data analysis techniques initially
developed in the fields of turbulence and nonlinear physics (e.g. scaling and multi-scaling approaches
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for data analysis and stochastic simulation). Finally, the role of simulation tools for theoretical studies
is discussed in this paper.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Over the last decade, the modelling of biological systems has undergone great develop-
ment resulting in many improvements over a wide range of scientific disciplines. It is clear
that increases in computer power and modelling tool and simulator development are the
major determinating factors of this change[7,20]. However, the complexity of biological
systems, and gaps in the fundamental understanding of the identification of some complex
behavioural responses of individuals or populations has handicapped the development of
coherent and comparable models.

In ecology many processes can be assimilated to discrete events, thus their representa-
tion by continuous mathematical functions may be nothing more than a phenomenological
description of the net result of many processes, which are poorly understood or even not
understood[19]. We will thus refer to the definition of individual-based models (referred to
as IBMs hereafter) relying upon the recent development of models based on object-oriented
computer languages and associated tools and simulators[36]. According to these authors,
IBMs should include discrete individuals with their complete life cycles, as well as dif-
ferences between individuals and the dynamics of the resources (in general with spatial
heterogeneity) upon which the individuals compete. This approach makes more realistic
assumptions and allows for the representation of the differences between individuals and
the main processes at the individual scale. This framework is very close to the biologist
point of view, the representation of functional responses (i.e. mathematical models) allow-
ing the simulation of mean behaviour of the population is no longer made, but the emerging
properties at the population level resulted from the diversity of individual trajectories and
their adaptation capabilities in the simulation. When individuals differ in their abilities to
acquire and/or to compete for resources, populations are able to persist at much smaller
population sizes[17]. The properties simulated at larger scales (population scale or larger
spatial domains) are not strictly deterministic and are called “emerging properties”[27].
Multi-agent systems (MAS), which are a collection of independent agents interacting via
discrete events[24], subsequently provide an adequate framework for developing IBMs fit-
ted to the present challenge of modelling copepod individuals, populations and food-webs
[33].

Although IBMs offer a great potential for challenging ecological studies, this potential
is still far from being fully exploited[12]. Consequently more “experiments” using IBMs
should be conducted to try to relate them more directly to theory. The first applications tried
to compare IBM representations to their representative analytical formulation[38,34,4].
Even if these IBM formulations were close to the analytical model at the population level,
it has been shown that the outcome of IBMs can or cannot be comparable to the results
provided by more standard modelling approaches. This is another demonstration of the
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potentials of IBMs to provide new insights into a priori known dynamics of some systems
and particularly for patterns in both space and time.

The development and use of IBMs in both aquatic and terrestrial ecology is continuously
increasing[12]. However, several authors recognize the necessity of improving computer
implementation and reproducibility of models[11]. A significant effort has thus been made
on the “technical” aspects of modelling by proposing platforms and simulators dedicated
for IBMs [20]. All these recent papers have aimed at improving the great potential of IBMs
in contributing significantly to render this approach of modelling more popular[12,11].
However, this progress cannot be achieved without paying a particular attention to the
way to decide on model structure and to make the model readable and testable. Some
authors focused on these questions and suggested some concepts to improve IBMs, as the
use of (i) complex adaptive systems concepts as a theoretical foundation for IBMs[27], (ii)
component programming and dedicated platforms to simplify IBMs conception and enhance
their flexibility [11], and (iii) pattern-oriented modelling[13]. Nonetheless all these aspects
of improving IBMs development could be incomplete if we do not try to relate them more
directly to theory[33]. In particular, the concepts of emergence, adaptive traits, and fitness
are critical for devising theory of how individual traits explain system behaviours[14].
We show in this paper that the end-user platforms (e.g.Mobidyc) and associated tools can
significantly contribute to developing a common framework for linking IBMs to theory.
These tools contributed to make IBMs more popular and more accessible to ecologists. It
is thus possible to focus on more general questions because the model structure and its
development are no longer the main question. In this paper we focus on the properties of
spatio-temporal patterns generated by a stochastic IBM. It is a new way of analysing the
emerging properties of some classes of IBMs towards linking them to more analytical and/or
statistical theory.

The number of biological and ecological studies focusing on the spatio-temporal pat-
terns emerging from IBMs is now subsequently and naturally increasing (e.g.[18,23,28]).
However, we are not aware of any attempt to quantify the structure of the emerging patterns
in space and/or in time. It is nevertheless a critical issue in ecology, and more specifically
in aquatic ecology, where two fundamental and interconnected themes are (i) the devel-
opment and maintenance of spatial and temporal patterns, and (ii) the consequences of
the patterns for the dynamics of populations and ecosystems. In particular, zooplankton
organisms exhibit patchiness over a broad range of spatial and temporal scales, i.e. from
micrometers to hundreds of meters and from seconds to months[22,8]. The scale issue is
particularly critical in the framework of IBMs as many microscale processes (e.g. feeding
and mating behaviours) relevant at the individual levels are likely to affect the bioener-
getics of individual organisms and ultimately the population dynamics of zooplankton.
In addition, because patterns of zooplankton spatial variability and generating processes
are scale-dependent[35,1,29], zooplankton structure must be investigated using scaling
and/or multi-scaling approaches. This consists in considering first the spatial distribution
of the population: the fractal analysis of the support of this population is a useful tool that
describes its heterogeneity, and its patterns, at all scales. Such approach seems very ap-
propriate for multi-scale patterns, which is the case here for the simulation analysed. On
the other hand, the sharp fluctuations—called intermittencies—corresponding to the vari-
able levels in total population per cell, are characterized using a multi-scaling framework,
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where each intensity is associated to a given fractal dimension, hence the name multifrac-
tal.

In this context, the objective of this paper is to combine the use of IBMs and scaling and
multi-scaling approaches to characterize qualitatively and quantitatively emerging space-
time patterns. We use a recently developed platform dedicated to end-users and adapted
to make numerical experiments, leading us to the step of analysis of simulation. After an
introduction of the main characteristics of the platform, it will be applied to a population
dynamics model calibrated forEurytemora affinis, the most abundant species of copepod
in estuaries of the Northern Hemisphere. This species has been specifically chosen because
of (i) its ecological relevance and (ii) our extensive knowledge of its biological properties
at the individual level[6] that allows the elaboration of a realistic model. We subsequently
introduce the scaling and multi-scaling framework, and analyse the emerging space-time
patterns of the simulated population, with a special focus on the effects of the size of the
spatial domain on model outcome.

2. Development of the model

2.1. Use of “Mobidyc” platform

The “Mobidyc” platform is dedicated to non-computer expert end-users, with a flexible
architecture based on the use of MAS paradigm, which defines agents as autonomous objects
that perceive and react to their environment.Mobidycfocuses more on what each agent does
than on what it actually is and provides three kinds of agents: (i) Animats (moving agent)
that represent the typical individuals, (ii) Cells that represent a discretization of the space,
and, (iii) Non-located agents that are optional and may provide general scenarios for all
other agents or compute the results that the user wishes to save.

The advantage of this approach is that all the different elementary tasks that form the
behaviour of individuals can be clustered into a low number of classes of activities, e.g.
locate, select, translate, compute, end, and workflow control[11].

2.2. Life cycle representation and model architecture

From an individual point of view, each individual of a copepod population has to follow the
schematic template shown inFig. 1. Most copepods exhibit a clear sexual dimorphism with
only one reproductive stage (adults: C6). After copulation each mature female can produce
a certain number of eggs. Between embryonic and mature stages each individual should
pass successively through the six larval (naupliar) stages and the five juvenile (copepodite)
stages. In order to simplify the copepod life cycle, the naupliar stages were aggregated
into two groups as proposed by Souissi and Ban[32] whereas the copepodite stages were
represented in detail. Moreover, females and males are separated since the last copepodite
stage (C5), because their development is different.

Each individual is represented by an animat where in its basic form contains three at-
tributes: age, location, and number, and one predefined task corresponding to ageing of
individuals (grow older). In this model the attribute number is set to one to represent an
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Fig. 1. Schematic representation of life cycle of the copepodEurytemora affiniswith aggregation of the larval
stages into two groups: N1–N3 and N4–N6. Sexes are separated at the last juvenile stage (C5). A “Mobidyc” agent
containing a dictionary of attributes and an ordered dictionary of tasks represents each stage.

Table 1
List of attributes used to define the life cycle of the copepodEurytemora affinis

Attribute Owner Definition

Age All stages Age (days)
Location All stages Position in the grid of cells
Number All stages Number of individuals per agent
rand All stages Intermediate, used to assign a random real between 0 and 1
state All stages Intermediate, used to define the state of survival
pSurv All stages Probability of survival in the stage
meanDuration All stages Mean stage duration for stages Egg to C5, and life span in stage adult (C6)
alpha All stages Parameter for the variability around mean stage duration
minDuration All stages Intermediate, used to compute the minimum stage duration
maxDuration All stages Intermediate, used to compute the maximum stage duration
duration All stages Stage duration
stateSex C4 Intermediate, used to define the type of sex in the stage C5
pFemale C4 Sex-ratio of the population (proportion of females)
fecund Female Fecundity

individual; however, for other models the number can be an integer (i.e. group of individu-
als) or a real number (i.e. concentration of a subpopulation). The complete list of attributes
needed to complete the definition of the model is shown inTable 1.

3. Application to Eurytemora affinispopulation

Among estuarine copepod speciesE. affinis is dominant in the temperate estuaries of
the Northern Hemisphere[16,2,10]and its spatial repartition is generally restricted to the
low-salinity zone. Several experimental studies were carried out in the laboratory in order
to study the development of the population of this species under several conditions of food,
temperature and salinity[6]. This species offers a good example for estimating the parameter
values and then get realistic representation of the development of a population dynamics
model. However, for the sake of simplicity, the simulation will be done under constant and
optimal conditions of development corresponding to the temperature of 15◦C.
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Table 2
Definition of the tasks used to develop the life cycle of the copepodEurytemora affinis
Agent task Definition Type Setting

Grow older Compute the age of the agent Predefined my_age:= my_age+ simulator_timeStep
StateSurvive Determine the state of the Predefined my_rand:= Random_real[0, 1[

agent for survival (ModifyAttributes) my_state:= my_pSurv− my_rand
CondMortality Conditional mortality Predefined if my_state< 0 them I am dead
TempDuration Computation of the duration Predefined my_MinDuration:= ((1 − my_alpha) ∗ my_MeanDuration)

in each stage (ModifyAttributes) my_MaxDuration:= ((1 + my_alpha) ∗ my_MeanDuration)
my_duration:= Random real [my_MinDuration,my_MaxDuration[

Hatching/ Transfer from one stage Predefined If my_age> my_duration
Moulting to the next one (Metamorphosis)
DefineSex Define the sex of agent after Predefined my_rand:= Random_real[0, 1[

moulting in the stage C4 (ModifyAttributes) my_stateSex:= my_pFemale− my_rand
MoultingM/ Transfer from C4 to C5m/ Predefined If ((my_stateSex< 0) AND (my_age> my_duration))
MoultingF from C4 to C5f (Metamorphosis) / ((my_stateSex> = 0) AND (my_age> my_duration))
Reproduction Reproduction of females Predefined Number of offsprings per individual equal to my_fecund

into eggs (Reproduction)

Note: The predefined task ‘ModifyAttributes’ is very useful for developing several models as the example shown
here as it is specifically designed to deal with mathematical calculations involving agent attributes.

Table 2shows the definition and the settings of the different tasks used in this model.
The survival of any individual for a time step (here 0.25 day) is given by the sign of its state
attribute (difference betweenpSurvand a random number between 0 and 1), i.e. for a high
value of survival, the probability of obtaining a negative state is very low.As a consequence,
the individual has a larger probability of surviving than dying during the simulation, these
rules (and may be others) are parameterized in the predefined task of mortality. Most agent
behaviours require a computation of mathematical relations to update their attribute values.
In Mobidyc, this is done through the task “ModifyAttributes”. An example of its use is
illustrated inFig. 2with the setting of the copepod duration in a stage. The stage duration
for each individual is obtained by drawing a random real number between the minimal (i.e.
the fastest individual) and maximal (i.e. the slowest individual) stage duration. The attributes
“MeanDuration” and “alpha” are used to compute the previous limit of the possible values
of stage duration.

3.1. Model parameterization and simulation without spatial representation

The biological trajectory shown inFig. 1was studied for several individuals under con-
trolled and optimal conditions (abundant food and 15◦C). These experiments allowed to
estimate the values of attributes “MeanDuration” and “alpha” for all developmental stages
(Table 3). A clear difference on rate of development is observed between males and females
in the last juvenile stage (C5). Females require the double time of males before moulting
to the final adult stage (Table 3). This difference in physiology between sexes justifies the
schematic template used in our model (Fig. 1). In order to complete the parameterization
of the model a 1:1 sex-ratio is adopted (“pFemale” = 0.5). The same procedure used for
survival is applied to determine randomly whether the individual in stage C4 will moult into
C5f or C5m. Finally a constant fecundity rate is considered for females (5 eggs per female
every time step) and reproduction starts after an observed delay of 2 days.

Before studying spatial patterns a first simulation without spatial representation is nec-
essary. Starting with 50 males and 50 females, the detailed results of five runs of this
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Fig. 2. Snapshot of the commonly used task “ModifyAttributes” to compute the stage duration (here embryonic
development time) of an individual. The mathematical expression can be chosen from the list on the left or can be
created using simple mathematical grammar syntax. A parameter value can be constant (fixed numerical value),
an attribute value, or a function of an attribute value. For an animat, expressions can involve attributes of the
running animat (i.e., my_duration), of its cell (myCell_attributeName), of one of the simulator characteristics
(i.e., Simulator_timeStep), or of any non-located agent. One task using “ModifyAttributes” can contain a series of
mathematical instructions. The window in the second plane is used to define the community from the principal
menu of “Mobidyc” interface, which is shown in the third plane.

Table 3
Parameter values used in the simulations
Stages Mean Duration (days) alpha pSurv

Egg 1.00 0.10 0.98
N1–N3 3.35 0.10 0.96
N4–N6 5.00 0.20 0.96
C1 4.50 0.30 0.98
C2 3.90 0.20 0.98
C3 3.40 0.40 0.98
C4 2.70 0.40 0.98
C5m 3.20 0.25 0.98
C5f 6.30 0.25 0.98
Male 32.20 0.20 0.98
Female 28.10 0.20 0.98

simulation are shown inFig. 3. The model correctly simulates the succession of the devel-
opmental stages with respect to their stage durations (see discontinuous line inFig. 3) and
other demographic parameters such as fecundity and survival. The stochastic representation
of the stage survivals (Table 2) shows the visible differences between the five runs realized
with the same set of parameters (different curves inFig. 3).

For the next sections the total abundance of the population will be considered as a synthetic
descriptor for studying spatial patterns. The temporal pattern of this descriptor shows a
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Fig. 3. Simulation of the development of the population ofEurytemora affinisduring 2 months under constant
temperature(15◦C) and without spatial representation. Five runs (represented with different colours) are realized
with the same initial conditions of a mixture of 100 adults with a sex-ratio 1:1. Time evolution of each stage and
for the complete population are shown. The discontinuous line shows the progression of a cohort development.

development of two generations of the copepodE. affinis. The growth of the population
during the second generation is due to the high fecundity (constant) and also due to high
values of probabilities of survival arbitrary used in this simulation (Table 3). We will mainly
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focus hereafter on simulation times multiple of 10 days. These discrete values correspond
to typical moments of the dynamics of this species during two generations.

3.2. Simulation with spatial representation

Modelling behavioural scenarios of individuals.An open grid of square cells where each
cell has 8 neighbours represents space. Then a predefined task of moving is added and
parameterized for all stages (excepting eggs). After each time step, individuals move to a
cell randomly selected from its neighbourhood. In order to introduce a difference in motion
between larval and later stages, the neighbourhood is set to one and two cells for larval and
later stages, respectively.
Using“primitives” and the“batch” mode to perform“numerical experiments”. A default

cell (spatial agent) contains two attributes only: location (cell position) and edge, which is
a binary attribute, set to one for all boundary cells of the grid. But there is no boundaries
here, as you use an open (i.e. torus) grid. In order to obtain spatio-temporal patterns of
total density of the population a computation of the value of this descriptor in each cell and
for each time step is necessary. The number of individuals in each cell was stored in list
attribute (vector added by the user) by using the user-defined task “CountAllInACell”. Fig. 4

Fig. 4. Example of building a task “CountAllInACell” with primitives. The linear sequence of the different stages
of a task (locate→ sort→ compute→ update) and the different classes of primitives provided by Mobidyc are
detailed in[11]. Primitives exchange only one argument: starting with the current cell, the translate primitive “From
Cells to Animats” returns all animats in the cell. Finally the compute primitive “To count” stores in a attribute of
the cell (here a list type attribute) the number of animats.
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shows an example of building the task “CounAllInACell” composed of three primitives: a
find type primitive (“Me”), a translate primitive (“From Cells to Animats”) and a compute
type primitive (“To count”). The component programming and the use of primitives within
“Mobidyc” platform are detailed in[11].

4. Describing space-time multi-scale patterns of simulated populations

A key issue in ecological science is to understand how a population occupies the avail-
able physical space as a whole, but also how patches of different intensity are spatially
organized in order to infer e.g. how long a limited resource can sustain a population. This is
addressed here using related but conceptually different analysis methods to investigate the
spatial structure of the simulated population ofE. affinis. The simulated population clearly
presents a differential spatial structure when observed for simulation times ranging from
10 to 60 days (Fig. 5). In particular, apart from the obvious fluctuations in abundance, the
population appears rather inhomogeneously distributed over the simulation domain, and
presents different levels of intermittency. We analyse below this inhomogeneity and its time
evolution using several scaling analysis techniques. We first show the non-uniform and
non-Gaussian character of abundance values using rank-frequency analysis and consider-
ing the probability density of the field. Next we consider the degree of space-filling of the
population and its time evolution. We then focus on the multiple-scaling properties of the
abundance field, using several multifractal analysis techniques.

4.1. The total population distribution in each cell

We consider first an analysis of the intensity distribution in the peaks visible inFig. 5. This
is done here without considering spatial information, for the 128× 128 cells simulation,
hence presenting 3584 values for an estimate of the distribution of the total population in
each cell.

A first approach corresponds to a rank-ordering approach, also called “Zipf plot”. This
corresponds to the observation of the frequency of occurrence of any event, as a function of
the rankr, when the rank is determined by the above frequency of occurrence. Zipf’s law
[40] corresponds to a power-law rank-ordering curve: the frequencyfr of the rth largest
occurrence of the event is inversely proportional to its rankr asfr = f1/r wheref1 is the
frequency of the most frequent (i.e. the largest) event in the distribution. In log–log scales,
the Zipf distribution gives a straight line with slope−1. The generalized Zipf distribution
is subsequently defined asfr = f1/r� where the log–log plot can be linear with any slope
�. More generally, the Zipf law can be written as

Xr ∝ r−�, (1)

whereXr is the “weight” of an occurrence of an event relative to its rankr, and� = 1
and � �= 1 for the Zipf’s and the generalized Zipf’s law, respectively. Alternatively, a
“uniform” behaviour will manifest itself as a continuous roll-off from a horizontal line
(i.e. � → 0) to a vertical line (i.e.� → ∞). This is representative of the fact that every
value (bounded between a minimum and a maximum) is equiprobable. In addition, we
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Fig. 5. Spatio-temporal development of the total population of the copepodEurytemora affinissimulated in spatial
grid 128× 128. Only time of simulation multiple of 10 days are selected.

stress that this framework can be directly applied to discrete processes (e.g. zooplankton
abundance), as well as continuous processes (e.g. phytoplankton concentration) through
Eq. (1). Applying Eq. (1) to the simulated population on a 128× 128 cells illustrates the
above stated arguments. The Zipf curves, shown for simulation times of 10, 30 and 60
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Fig. 6. Illustration of the non-uniform character of the distribution of the simulation of a population of the copepod
Eurytemora affinisafter 10 days (diamonds), 30 days (triangles) and 60 days (grey dots) of simulation. The
continuous curves represent simulated uniform distributions with the same minimum and maximum values of
densities than the observed populations after 10 days (grey curve) and 60 days (black curve). The size of the
spatial grid is 128× 128 cells.

days, are compared with the curves expected in case of uniform distributions with the same
minimum and maximum values than the simulated ones (Fig. 6). It appears that even if the
empirical curves cannot be reasonably fitted by a linear regression, they nevertheless clearly
exhibit more structures than the uniform distributions. In addition, the Zipf curves exhibit
a “hysteresis-like” effect associated to the massive mortality (principally the remaining
adults) observed after 30 days of simulation (seeFig. 6). After 10 days of simulation, the
statistical distribution of the simulated population is then similar to the one observed after
60 days of simulation, even if their simulated spatial distributions are clearly different (Fig.
5). The lack of structure observed in the population after 30 days of simulation stems from
the very weak observed abundance (i.e. ranging from 1 to 4 individuals per cell).

The rank-ordering approach gives in fact access to the same information as the prob-
ability distribution, but presented in another manner. This consists mainly in considering
the cumulative distribution (see[31] for a comparative discussion). We consider here also
the probability density of the total population for times 40, 50 and 60 (Fig. 7). A Gaussian
probability density function (pdf) with the same mean and variance as the population at
time 60, is shown for comparison. It is clear that the population distribution per cell is quite
far from a Gaussian distribution, since large events are much more frequent. Furthermore,
at the times considered, the pdf have roughly the same behaviour: in a log-linear plot, the
curves are not far from each other, and rather nicely fitted by a stretched exponential of
equationCe−ax�

, whereC =0.53 anda =1.5 are constants and�=0.6 is the characteristic
exponent of the stretched exponential (� = 2 for Gaussian variables,�< 1 for fat-tailed
distributions, see discussions in[31]).
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Fig. 7. Probability density function of the total population in each cell, for a grid of 128× 128 cells, and for time
steps 40 (open triangles), 50 (open squares) and 60 (black dots). A Gaussian probability density function (pdf) is
shown for comparison, having the same mean and variance as the experimental population at time 60. A better fit
is provided by a stretched exponential (thick dotted line).

These close but complimentary analyses showed that the distribution of the total pop-
ulation per cell is not uniform nor Gaussian, and presents a specific variability that can
be relatively nicely fitted by a stretched exponential with fat-tailed probability distribution
function.

4.2. Fractal presence-absence of the population and its time evolution

The degree of space-filling ofE. affinispopulation is investigated via its scaling (i.e.
fractal) properties. Knowing that a fractal dimension of a set characterizes its space-filling
properties (see e.g. Feder, 1988), on a two-dimensional space a uniform set of points will
then have a higher fractal dimension than less homogeneously distributed point patterns
(Fig. 8). To estimate the fractal dimension ofE. affinispopulation, we first binarized its
distribution (Fig. 9) such as each cell containing at least one individual is blackened. The
initial distributions (seeFig. 5) are now transformed into point patterns (Fig. 9). A practical
method to estimate the fractal dimension is to superimpose a regular grid of pixels of length
� on the object, and count the number of “occupied” pixels. This procedure is repeated
using different values of�. The surface occupied by a point pattern is then estimated with
a series of counting boxes spanning a range of volumes down to some small fraction of the
entire volume. The number of occupied boxes increases with decreasing box size, leading
to the following power-law relationship:

N(�) ∝ �−D, (2)

where� is the box size,N(�) is the number of boxes occupied by the path andD the
fractal dimension.D is estimated from the slope of the linear trend of the log–log plot of
N(�) versus�. Fig. 10illustrates the application of the previous fractal analysis to the point
patterns estimated from the 128×128 cells simulations. The linearity of the log–log plot of
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Fig. 8. Schematic illustration of the concept of fractal dimension. A regular point pattern (A) will have a higher
fractal dimension than a “random” point pattern (B), a random clumped point pattern (C) and an aggregated
clumped point pattern (D).

N(�) vs.� is very good (Fig. 10A) and demonstrates the emergence of scaling properties
from our model of the population dynamics of the copepodE. affinis. The subsequent time
course of the fractal dimensions estimated from simulated patterns of simulation times
ranging from 2.5 to 60 days (with 2.5 days increments) is shown inFig. 10B. The space-
filling character ofE. affinistotal population increases rapidly until a critical threshold of
D = 1.5 is reached after a simulation time of 10 days. The fractal dimension then decreases
until a minimum is reached at simulation time of 32.5 days. The population finally increases
its space-filling character up to a maximum dimension ofD =1.87. It seems that the space-
filling properties of the total population are here under a density-dependent control as the
decrease and increase observed in the fractal dimensions (Fig. 10B) occur, respectively,
while the total abundance of the population decreases and increases (seeFigs. 3and5).

4.3. Multi-scaling properties of the total population repartition

The next issue addressed here is to know whether the patches of different abundance are
similarly distributed in space. Eq. (2) can be modified as

N�(C > c) ∝ �−Di , (3)
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Fig. 9. Binary illustration of the spatio-temporal development pattern of the total population of a simulation of the
copepodEurytemora affinisin spatial grid 128× 128 cells. The occupied cells are black. The size of the spatial
grid is 128× 128 cells. The different panels (A–F) correspond to the increasing times of simulation shown inFig.
5 (10–60 days).
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Fig. 10. Illustration of the scaling behaviour of the point patterns ofEurytemora affinispopulation after 10 days
(diamonds), 30 days (triangles) and 60 days (open circles) of simulation (A), and the time course of the fractal
dimensions estimated for simulation times ranging from 2.5 to 60 days with 2.5 days increments (B). The size of
the spatial grid is 128× 128 cells.

whereN�(C > c) corresponds to the number of boxes of length� containing more individ-
uals than a threshold valuec, andDi the multifractal function associated to the threshold
valuec. For each threshold concentrationc, the slope of the log–log plot ofN�(C > c)
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Fig. 11. Time course of the multifractal functionsDi , estimated for three sets of simulations time: (A) 2.5, 5 and
10 days (from bottom to top), (B) 10, 20 and 30 days (from top to bottom), and (C) 30, 37.5, 40 and 60 days (from
bottom to top). The size of the spatial grid is 128× 128 cells.

vs. � is an estimate ofDi ; each threshold valuec is thus characterized by its own frac-
tal dimension. In particular, the nonlinearity of the functionDi when plotted against the
threshold valuec is indicative of multifractality. The shape of the functionDi then provides
an estimate of the level of complexity of the spatial structure in a given population. A very
fast decrease ofDi towards a minimum value of 1 will then characterize a population dom-
inated by a low-density background where high-density patches are very heterogeneously
distributed and basically reduced to a few aggregated clumped point pattern (seeFig. 8).
On the opposite, the slower theDi decrease is, the more space filling is the distribution of
high-density patches, and the more complex is the whole structure of the population. This
is illustrated by the time course of the estimated functionDi (Fig. 11). As previously sug-
gested, the structure of the population presents a density-dependent “hysteresis-like” effect.
The complexity of the population spatial structure then increases with simulation times up
to 10 days (Fig. 11A), then decreases with the decrease in abundance for simulation times
ranging from 10 to 30 days (Fig. 11B). Finally, the complexity of the population spatial
structure increases again from simulation times ranging from 30 to 60 days (Fig. 11C).
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Fig. 12. Scaling invariance of the total density field, for a grid of 128× 128 and at time 60. Moments vs. distances
for the shears are represented (from bottom to top, moments of order 0.6, 1, 1.6, 2, 2.6, 3. A clear scaling regime
is visible, for scales up to about 60. This upper bound for the scaling regime corresponds to half the radius of the
grid.

Another way to consider the multi-scale properties of the structures is to introduce an
analysis technique coming from the field of turbulence (see[25,9]), and aiming at studying
the moments of orderq > 0 of the amplitude of the difference�Xl = ‖X(M) − X(N)‖
of the fieldX between positionM and positionN, which is assumed here (hypothesis of
isotropy and stationarity of increments) to depend only on the distancel=d(M, N) between
the two positions. For an isotropic 2D multifractal field, we thus expect, as an analogy
with turbulent properties (see[30,29]for applications of multifractal structure functions to
plankton populations):

〈�X
q
l 〉 ≈ l�(q), (4)

where〈·〉 means ensemble average and�(q) is a scale invariant function (a second char-
acteristic function, in the field of probability theory) which is nonlinear and concave, and
characterizes the scaling properties of the fluctuating fieldX. In particular, for a fractal
(often called in this case “monofractal”) field,�(q) is linear; for example for a Brownian
motion �(q) = q/2, and for a fractional Brownian motion of indexH, �(q) = qH . The
moment approach is useful to characterize the whole hierarchy of fluctuations, since low-
order moments (close to 0) characterize weak fluctuations, while larger order moments (in
practice up to moments of order 4) characterize larger fluctuations. Let us also recall that
the moments of order 1 and 2 correspond to the mean and variance of the fluctuations, a
framework which is generalized here since we consider a continuous range of values of
q > 0.

This procedure is applied to the 128× 128 grid, at time 60, showing the most variability,
and for which the multiple-scaling analysis is the more likely to be justified. The structure
functions are shown inFig. 12, giving the moment order versus the scale (distance between
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Fig. 13. Application of the extended self-similarity (ESS) technique, for moments from 0.2 to 4 (from bottom to
top). This consists in plotting the moment of orderq vs. the moment of order 1, in log–log representation.

points), for various orders of moments. The scaling of Eq. (4) is well verified up to a scale
of about 60, which is closer to half the size of the grid (128): this is expected since the
simulation are done on a torus, so that the maximum reachable distance between two points
is half the dimension of the grid. For more accurate estimation of the slopes, a variant of
the structure function plot is applied, which is also coming from the field of turbulence: this
is called extended self-similarity (ESS)[3], and consists in representing〈�X

q
l 〉 vs. 〈�Xl〉

(instead of〈�X
q
l 〉 vs. l). This writes

〈�X
q
l 〉 ≈ 〈�Xl〉z(q) (5)

when Eq. (4) is verified, Eq. (5) will givez(q) = �(q)/�(1). Both approaches will then
give formally the same result, but in practice, as shown originally by Benzi et al.[3],
the self-similar scaling given by Eq. (5) is much more accurate than the scaling present
in Eq. (4). This general property has been shown to be present in many fields, and we
show inFig. 13that this is also the case for our simulation:z(q) is estimated for a whole
range of moments orders, and sinceH = 0.1 may be estimated separately, this provides an
accurate estimation of the function�(q), shown inFig. 14. This figure confirms the weak
multifractality of the data:H is relatively small and the experimental curve departs from
linear behaviour (corresponding to homogeneous fractal) only for moments larger than 3.
Nevertheless, it is an interesting property since it shows that simple rules may generate
heterogeneous multifractal properties for the total zooplankton spatial distribution. Such
properties were already observed in the field for zooplankton distribution[26,29]. In the
latter case, however, the multifractality is more pronounced, certainly due to the effect of
turbulence, while in the present simulation, turbulence is of course absent.
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Fig. 14. The scaling moment function characterizing the scale-invariant fluctuations of the total density field
(black dots), for grid 128× 128 at time 60. This function is slightly nonlinear, showing a slight—but neverthe-
less clear—multifractal property. The line corresponding to an homogeneous fractal is shown for comparison
(continuous line).

5. Discussion

5.1. Individual-based models and theoretical frameworks

The increasing importance of individual-based modelling over the last decade has resulted
in an exponential increase in the number of papers using these techniques in the field of
ecology. The IBMs are constructed using a “bottom-up” approach by detailing the dynamics
of entities making up the system and their interactions. However, this recent popularity of
IBMs may hamper progress without reaching a consensus on how these models should be
developed. IBMs can easily reach high complexity levels, making their description or their
readability very difficult. One fundamental difficulty in the evaluation and comparison of
IBMs in the literature comes from the lack of any theoretical formalism, such as differential
equations, where one can express, conserve and compare one model to another, or to export
it to another modelling tool. The development of IBMs in both terrestrial and aquatic
ecosystems contributed in some extent to improve our understanding of the complexity
of interactions and organization of natural systems. Grimm[12] considered that a unified
theory has not yet emerged from IBMs developed in the 1990s. At the beginning of IBMs
development, modellers did not explicitly address the question of how they should link
theories in ecology with their models. The differences in motivations (studied ecosystem,
main questions and goals) and modelling tools may justify why modellers spent more time
in developing their models (use of complex computer programming i.e. object-oriented
languages and software engineering) rather than analysing them in a more general theoretical
framework. However, these simulation models generally lead to very complex computer
programs, which are extremely prone to bugs[15]. These difficulties explained the gap
between the early development of IBMs and the general theory of ecological systems. This
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handicap is now partially overcome by the recent development of simulators and dedicated
tools making IBMs more accessible to all ecologists[20,11]. More recently, Grimm and
Railsback[14] suggested the development of an individual-based theory and explained how
population dynamics emerge from individual traits and interactions.

With the proposed tools it is possible to focus on applications with the general objective
of analysing the emerging properties of the model. In the present context the main properties
of the model are its multi-scale heterogeneity, coming from the fact that birth is clustered
while death occurs randomly in space. This non-symmetric birth–death process, associated
to a normal diffusion, generates heterogeneous distributions, even if all the processes and
exchanges between individuals are purely local and memory less. To obtain a wilder het-
erogeneity, and clear long-range correlations between abundances, other rules should be
introduced, possessing e.g. non-local influences on birth and death processes, or “wilder”
movements PDFs. Such “experimental” and numerical exploration, considering the spatial
and temporal correlations, and the multi-scale heterogeneities in association with the type
of rule for birth, death and movements, is clearly possible with the present platform. It can
provide new insights in the generation of multi-scale patchiness, through the identification
of universal emerging properties in space and time.

5.2. Use of dedicated tools and platforms: application to copepod population model

In this paper a recently proposed platform called Mobidyc dedicated to end-users is used
to develop the copepod population model and also the different scenarios of simulations.
The principles and the architecture of this platform, based on multi-agents systems (MAS),
are detailed in Ginot et al.[11]. The encoding effort is concentrated at the level of the
different tasks that the agent has to execute, or at the even more elementary level called
“primitives”, at which the previous tasks may be broken down into. An example of using
of these primitives to make a task “CountAllInACell” was shown inFig. 4. This approach
facilitates the conception of models, restricts programming errors and increases readability.
The example of the population dynamics of the estuarine copepodE. affinisevolving at
constant and optimal temperature(15◦C) was chosen for the following practical reasons:
(i) the population cannot be modelled by a single stage because of the characteristics of life
cycle of copepods; (ii) only the last stage (adult) can reproduce; (iii) several experimental
and empirical studies focused on this species of copepods; and, (iv) the results of the recently
developed individual-based experiments for studying (in the laboratory) life cycle charac-
teristics of this species[6] allowed to correctly parameterize the demographic processes
used in the model (i.e. mean stage duration and its variability). The high number of stages
used in the model increases the number of demographic processes (tasks) and parameters
(attributes). Theoretically, the modification of any parameter value (or a combination of pa-
rameters) could result in a modification of the simulated patterns. Such sensitivity analysis
is out of the scope of our paper. The main objective is to show for the first time the high
potential of using scaling and multi-scaling techniques for analysing the generated patterns
by spatially explicit IBMs in ecology. For these reasons, the mean probabilities of survival
in all stages as well as egg production for females are considered constant. In addition no
density-dependent effect was introduced in the model. In other words the obtained spatial
and temporal patterns are solely generated by the random walk of individuals at local scale
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and the other demographic processes (birth, metamorphosis and mortality) in the absence
of any externally imposed pattern. For this particular case the model can be simplified by
lumping naupliar stages (N1–N6) and the first copepodite stages (C1–C4). But for more
realistic conditions where the heterogeneity of stage-specific probabilities of survival is a
general rule, the lumping of developmental stages may engender errors when the average
parameters are estimated[32]. However, in practice the end-user define one developmental
stage (i.e. egg), then Mobidyc platform offers the possibility of duplication of this agent.
The user can easily update the state of the new agent (stage) and if necessary add the ad-
equate new tasks (i.e. two moulting tasks in C4). The only possible limitation is the size
of the spatial grid and/or the total number of the active agents during the simulation. This
is a classic limitation of most IBMs that require powerful computers. In our examples a
personal computer (Pentium IV; 3.02 Ghz and 1 Go RAM) was used to run all simulations.
The simulations with 128× 128 cells and a 6 hours time step took less than 2 days.

5.3. Emerging space-time properties in zooplankton populations

Young et al.[39] showed that the population of very simple random walking organisms
developing in a homogeneous environment can lead to the emergence of spatial patterns.
However, in their model the reproduction is simply represented by binary division and the
mortality rate is considered constant. In our example we tried to develop more realistic life
representation of a planktonic organism by including discrete developmental stages. The
development from one stage to another and the survival were represented stochastically. In
order to understand the combined effects of demographic processes (at the population level)
and the local behaviour (random walk) on the emerging patterns the parameterization of the
model was kept as simple as possible. Although these simplistic assumptions were used in
the model, the generated patterns showed significant scaling and multi-scaling properties.
This is a first and immediate objective reached by this study. For future studies the quantifi-
cation of these patterns using the same techniques or other techniques may allow analysing
the complexity of the behaviour of these IBMs. One can envisage testing the effect of mod-
ifying the basic behaviour of individuals (i.e. aggregative behaviour) or the introduction of
spatially heterogeneous resources. The last example is easy to implement with Mobidyc
because each cell is an agent and can exhibit a simple or more complex dynamics. The user
can also use ascii files to fill the space in either the initial conditions or for each time step.
The space-time patterns generated by the model developed here to describe the population
dynamics of the estuarine copepodE. affiniscan be regarded as being realistic as on the
basis of a very simple parameterization of the life cycle of this species they exhibited sev-
eral properties that have been previously observed in the field for zooplankton populations.
These properties are (i) non-uniformity, (ii) scale-dependence (or fractal behaviour), and
(iii) intermittent (or multifractal) behaviour. In addition, we stress here that these properties
are fully compatible with those observed in the field for phytoplankton and zooplankton
populations (e.g.[26,30,29,21]), ensuring the relevance of the emerging simulated patterns.
On this basis, it is reasonable to think that the inclusion of critical biological parameters
such as behaviour, cannibalism and predation, and physical parameters as ubiquitous as
advective and turbulent processes should improve the realism of the model, as well as the
convergence between its emerging fractal and multifractal properties and the fractal and
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multifractal properties of in situ populations. Several theoretical studies showed the inclu-
sion of 2D spatial representation of very simple predator–prey or host–parasitoid models
(i.e. Lotka–Volterra) can generate complex spatio-temporal patterns[5,28].

5.4. Effects of the size of the simulation domain

We finally stress that the size of the grids used to conduct the simulations is potentially
a critical, while often neglected, limitation of the IBMs that can have significant effect
on the properties of the simulated population. Schofield et al.[28] used initial conditions
of 100 hosts distributed randomly through a domain (25× 25 cells) in ten patches, each
containing ten hosts. Then all their subsequent simulations and analyses were based on the
same domain and the same initial conditions. In another domain (medical) Mansury et al.
[23] used an agent-based model to study the emerging patterns in tumour systems. They
used a 48× 48 cells for all analyses. In these examples (and others) the size of the grids
was not discussed, however, we believe that this issue is interesting and the sensitivity of
the patterns to the size of the spatial domain should be discussed. This is already done in

Fig. 15. Spatial distribution of the total population of the copepodEurytemora affinisafter 55 days of simulation
in four sizes of spatial grids: 16× 16, 32× 32, 64× 64 and 128× 128 cells.
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Fig. 16. The time course of the fractal dimensions estimated for simulation times ranging from 2.5 to 60 days
(with 2.5 days increments) for four sizes of spatial grids: 16× 16 pixels (black dots), 32× 32 (grey triangles),
64× 64 (open squares) and 128× 128 cells (black diamonds).

other numerical fields such as turbulence modelling, where the effect of the grid on turbulent
profiles is systematically studied[37]. To illustrate this issue in our study, one must compare
the differences perceptible in the distribution of the total abundance ofE. affiniswhen the
same model is ran on grids of different sizes (Fig. 15). First, it appears that for a given
simulation time (here 55 days), the total number of individuals is highly dependent on
the size of the grid (Fig. 15). Second, the visual appearance of the distribution is also very
distinct between each simulation; as for instance the intermittency of the distribution sharply
increases with the size of the domain. Finally, we investigate the space-filling properties of
each of these distributions for simulation times ranging from 2.5 to 60 days (Fig. 16). For
grid sizes of 32× 32, 64× 64 and 128× 128 cells, the time course of the related fractal
dimensions exhibits roughly similar and consistent behaviours. However, in case of 16×16
cells grid the population is space filling after a simulation time of 7.5 days (Fig. 16). As this
could have critical consequences, for instance in case of a study aimed at estimating how
a limited resource can sustain the growth and survival of a grazing populations, this issue
should systematically be critically and carefully addressed before using any IBM to infer
ecologically relevant situation.
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