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ABSTRACT: The vanability of in vivo fluorescence, temperature and salinity in the vertically stratifled 
and well-mixed waters of the Baie des Chaleurs (Quebec, Canada) was investigated as a continuous 
function of scale by applying the concept of fractal dimension to variogram analysis. Widely applied to 
the description of spatial heterogeneity, fractal dimension appears here to be a helpful descriptive tool 
in discnrninating between homogeneity and heterogeneity In time series of both physical and biologl- 
cal parameters. In stratified waters, the structuration of in v ~ v o  fluorescence, temperature and salin~ty 
remains the same over time, in spite of mixing induced by the rise of a strong wind, and is shown to be 
associated with the global structure of the water column. In mixed waters, the situation is more 
complex, giving rise to specific behaviour of in vivo fluorescence and salinity. In both cases, the differ- 
ences observed between the fractal dimensions can be explained in terms of different ranges of scales 
perceived in pattern variability and thus, in the complexity of the pattern structure. Wc also suggest 
that the departure from strict selfsimilarity which seems to be associated with the vertical structure 
of the residual circulation is an indicator of the transitional zone between different levels of system 
organisation. 

KEY WORDS: Space-time variabllity . Homogeneity Heterogeneity . Fractal dimension . Stratified 
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INTRODUCTION 

Most processes in natural environments-physical 
forcings, population and community dynamics-are 
sources of heterogeneity and create space-time struc- 
tures such as  gradients, patches, trends or other com- 
plex patterns (Legendre & Fortin 1989, Dutilleul & 
Legendre 1993). These heterogeneous structures are 
particularly well developed in marine environments 
(Steele 1974, 1978, Haury et al. 1978) where resources 
such as plankton exhibit patchiness over a continuum 
of scales (Platt 1972, Mackas & Boyd 1979, Mackas e t  
al. 1985). The multiscale variability of marine environ- 
ments, outlined by Steele (1985, 1989), leads to a view 
of the ocean as a 'landscape' in the sense that it can be 
described by patterns of different temporal and spatial 
scales. Many physical and biological oceanographers 
have thus related their findings to the spectrum of 
physical processes, ranging from circulation patterns in 

oceanic basins to large gyres, to fine-scale eddies or 
rips (e.g. Denman & Powell 1984, Legendre & Demers 
1984, Mackas et al. 1985, Platt & Sathyendranath 1988). 
Ecologists have also recognised spatial heterogeneity 
as a major factor regulating the distribution of species 
(Wiens 1976, Risser et al. 1984, Urban et al. 1987). Thus, 
as  reviewed by Wiens (1989), ecology must deal with 
scale, because the objects it focuses on, the organisms 
and types of environment, are rarely found to be homo- 
geneously distributed through time or space. Yet until 
recently no quantitative nor qualitative theory has 
described the origin, dynamics, and consequences of 
heterogeneity in ways that could increase the accuracy 
of predictions about ecological processes in complex 
environments. Dealing with scales has thus been re- 
quired in order to overcome the difficulties generated 
by space-time dependencies associated with an hetero- 
geneous distribution of ecological variables. 

Mandelbrot (1983), who recognised the ubiquity of 
sets that violate basic assumptions of uniformity, intro- 
duced the concept of the fractal, a geometric form 
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which exhibits structure at all scales. In heterogeneous 
sets, where estimates of quantities such as biomass 
vary precisely with the scale at which measurements 
are made (Burrough 1981, 1983a, Milne 1988), fractal 
dimension then appears to be a useful measure of 
space-time complexity (Phillips 1985), and provides 
several advantages over other descriptive indices of 
ecological patchiness. Classical statistical theory works 
well in predicting change in variance due to different 
sizes of sampling units or different grains of sampling 
strategy when the sampling units are independent. 
The basic assumption of independence of replicates, 
however, is rarely verified in natural science and, 
therefore, the use of classical theory is questionable. 
Moreover, the more traditional, widely used mathe- 
matical descriptors, such as the variance-to-mean ratio 
(Taylor 1961, Frontier 1972, Downing et al. 1987), have 
little meaning in a multiscale spatial context (Palmer 
1988, Hurlbert 1990). Furthermore, space-time depen- 
dence frequently prohibits rigorous statistical analyses 
of ecological data, while inferences based on auto- 
correlated observations are risky (Bivand 1980). 

The primary goal of fractal analysis and similar tech- 
niques (i.e. spectral analysis) is to describe variability 
over a continuum of scales. Fractal geometry is thus 
becoming increasingly popular among scientists and 
has been successfully applied to a great variety of 
problems involving complex patterns in nature, includ- 
ing terrestrial (Burrough 1981, 1983a, Krummel et al. 
1987) and Martian (Woronow 1981) landscapes, cloud 
shapes (Lovejoy 1982), rainfall time series (Olsson et 
al. 1992), breaking waves (Longuet-Higgins 1994), 
shoreline erosion rate (Phillips 1985), and distributions 
of nesting bald eagles in rugged landscapes (Penny- 
cuick & Kline 1986). In ecology, insightful descriptions 
of various possible applications of fractals are given by 
Frontier (1987) and Sugihara & May (1990). Fractals 
have been used to describe habitat complexity (Brad- 
bury & Reichelt 1983, Bradbury et al. 1984, Gee & War- 
wick 1994a, b), species diversity (Frontier 1985, 1994), 
movements of marine (Bundy et al. 1993, Erlandson & 

Kostylev 1995) and terrestrial (Wiens et al. 1995) in- 
vertebrates, shapes of marine snow (Li & Logan 1995, 
Logan & Kilps 1995) and growth processes (Kaandorp 
1991, Kandoorp & Dekluijver 1992). 

Basically, in ecology, 'variability' indicates changes in 
the values of a given quantitative or qualitative descrip- 
tor; it is distinct from 'heterogeneity' which refers to 
patterns and processes composed of parts of different 
kinds (Kolasa & Rollo 1991). This distinction is, how- 
ever, not as sharp as may appear at first glance, and 
meanings essentially depend on the choice of approach 
(Downing 1991, Naeem & Colwell 1991, Shashak & 
Brand 1991). From a statistical viewpoint, however, 
'heterogeneity', when applied to the distribution of the 

values taken by a random variable, is the opposlte of 
'homogeneity', which refers to sameness and similarity. 
The degree of similarity implied by the term 'homo- 
geneity' may vary from a minimum of a single common 
attribute, as in the equality of means, to the extreme of 
total sameness, that is, equivalence of distributions, and 
thus refers-in the framework of time series analysis- 
to a pattern of variability characterised by the closeness 
of scales of variations. In this paper, 'homogeneity' and 
'heterogeneity' are specifically associated with patterns 
remaining similar upon subdivision in time-at each 
scale, the pattern differs but always shows the same rel- 
ative variabhty-as strictly defined in the framework 
of fractal theory (Mandelbrot 1977, 1983). In that way, 
fractal dimensions (DF) appear to be helpful measures 
in discriminating between homogeneity and hetero- 
geneity of space-time patterns. They reflect the balance 
of short-range and long-range variations and thus char- 
acterise homogeneous and heterogeneous patterns, re- 
spectively (Burrough 1981, He et al. 1994). A low DF 
value means that the heterogeneity of the variable is 
high and there are dominant long-range effects. A high 
DF characterises very complex processes where short- 
range, local variability is highly developed and tends to 
obfuscate long-range trends; the variable is thus more 
evenly distributed (i.e. less structured) in space and 
time. As an example, DF - 2 in a bi-dimensional space 
characterises regular-or homogeneous-patterns, 
indicating that the variation within a sampling unit will 
be equal to the variation among sampling units, while 
DF < 2 characterises more irregular-or heteroge- 
neous-patterns. 

In this paper, the concept of fractal dimensions is 
used in conjunction with variogram analysis, a geosta- 
tistical technique which is conceptually similar to the 
traditional block-size techniques of Pattern Analysis 
(Greig-Smith 1979), but offers the advantage of 
describing variation as a continuous function of scale 
(Palmer 1988). Fractal dimension DF is thus regarded 
as an index of the complexity perceived in series of 
temperature, salinity and in vivo fluorescence re- 
corded both in stratified and mixed waters in the Baie 
des Cbaleurs (Quebec, Canada). 

MATERIAL AND METHODS 

Sampling procedure. Sampling was conducted in 
the Baie des Chaleurs from 10 to 12 September 1991 
at a stratified station (20 m depth) close to Caplan, 
located well inside the bay, and from 20 to 22 Septem- 
ber at a vertically mixed water column (20 m depth) at 
Grande-Riviere, close to the entrance of the bay (Fig. 1). 
At each anchor station, measurements of physical 
parameters (temperature and salinity) and in vivo fluo- 
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Fig. 1. Locations of the 2 anchor stations along the north shore 
of Bale des Chaleurs, eastern Canada 

rescence (an index of phytoplankton biomass) were 
taken every hour from the surface to 20 m depth with a 
SBE 25 Sealogger CTD and a Sea Tech fluorometer 
over periods of 57 h at Caplan and 52 h at Grande- 
Riviere. Every 2.25 h,  current speeds and directions 
were measured for 5 min at 2.5, 5, 7.5, 10, 12.5, 15, 17.5 
and 20 m with an Aanderaa current meter, which was 
moored a t  5 m during the times between profiles. 

Data analysis. The vertical stratification of the water 
masses was calculated using the potential energy E,, 
(J m-3), which corresponds to the amount of energy 
required to redistribute mass in a complete vertical 
mixing (Simpson et  al. 1979, Pond & Pickard 1983): 

where H, p. P = p z  - dz, g a n d  z are  the height of 
- C l  

the water column, the'density, the mean density of the 
water column, the gravitational acceleration (m S-') 
and the depth, respectively. 

The Richardson number, Ri, was used to estimate the 
dynamlc stability of the water column (Vandevelde et 

where p, g, u and z are  the density, the gravitational 
acceleration, the horizontal component of the current 
velocity (m S-'), and the depth, respectively. This num- 
ber compares the stabilising effect of buoyancy forces 
(represented by the square of the Brunt-Vaisala fre- 
quency, dp/dz) to the destabilising influence of vertical 
shear in the horizontal velocity field (represented by 
the square of the velocity gradient, duldz)  over a given 
depth interval. Values under 0.25 indicate a potential 
instability, and larger values indicate a greater poten- 
tial stability (Mann & Lazier 1991). 

Missing data due  to an  inadequate ( > l  m ss') de-  
scending speed of the CTD probe were estimated 
using the method proposed by Zagoruiko & Yolkina 
(1982), which is particularly adapted to the prediction 
of missing data in bi-dimensional data tables. Unlike 
l-dimensional interpolation techniques, such as  krig- 
ing, this method provides for each missing data value a 
predicted value which is not limited to a n  intermediate 
value of its surrounding data in a given series but takes 
into account the whole data table. 

To detect dates, intensity and duration of any 
changes in the values of a given parameter, w e  used 
the cumulative sums method (Ibanez et al. 1993). The 
calculation consists of subtracting a reference value 
(here the mean of the series) from the data; then these 
residuals are successively added, forming a cumula- 
tive function. Successive negative residuals produce a 
decreasing slope, whereas successive positive residu- 
als create an  increasing slope (the value of the slope is 
proportional to the mean deviation). Values not very 
different from the mean show no slope. 

Fractal analysis. The concept of fractals has been re- 
cently introduced to the description of natural systems 
(Mandelbrot 1983) and strictly refers to geometrical 
patterns in which the Hausdorff-Besicovitch dimension 
exceeds the topological (i.e. Euclidean) dimension. In 
less technical terms, fractals are  temporal or spatial phe- 
nomena presenting a detailed structuration at  all scales, 
i.e. they do not lose details upon repeated magrufications 
or reductions. We used a method (Burrough 1981, 1983a) 
based on geostatistics and regionalised variable (RV) 
theory (Matheron 1971, Journel & Huijbregts 1978) to 
calculate fractal dimensions of physical parameters and 
in vjvo fluorescence for each of the profiles. RVs a re  
continuous variables whose variations are  too complex 
to be described by traditional mathematical functions 
(Phillips 1985). Patterns of variation in RVs can then be  
expressed by their semivanance y(h), defined as: 

where Z(i + h) is the value of the dependent variable 
Z(i) at a point separated from point i by distance, or 
lag, h,  and N(h) is the number of pairs of data points 
separated by the lag h. The semivariogram is the plot 
of y(h) as  a function of h The semivariance has, under 
certain conditions (e.g. see Berry & Lewis 1980 for 
further developments on the variance properties of the 
Weierstrass-Mandelbrot fractal function), the form of a 
fractal function that scales with h4-2D at  the origin; the 
fractal dimension D of the RV Z(i )  can thus be esti- 
mated from the slope m of a log-log plot of the semi- 
variogram of Z(i) (Burrough 1981, 1983a): 
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Because semivariograrn estimates tend to deteriorate preference to Spearman's coefficient of correlation p ,  
with increasing lag h for finite-length sample series although the latter was recommended In Kendall 
(i.e. greater distances are more affected by low sample (1976), because Spearman's p gives greater weight to 
sizes and spurious properties of the data; Journel & pairs of ranks that are further apart, while Kendall's r 
Huijbregts 1978), an objective criterion is needed for weights each disagreement in rank equally; see Sokal 
deciding upon an appropriate range of h to include in & Rohlf (1995) for further developments]. We thus 
the regressions. We used the values of h which max- eventually detrended the time series by fitting regres- 
imised the coefficient of determination (r2) and min- sions to the original data by least squares and used the 
imised the total sum of the squared residuals for the regression residuals in further analysis 
regression. 

Semivariogram analysis requires the assumption of 
at least reduced stationarity, i.e, the mean and the vari- 
ance of a time series depend only on its length and not 
on the absolute time (Platt & Denman 1975, Legendre 

RESULTS 

Physical data 
& Legendre 1984). Stationarity was tested by calcu- 
lating Kendall's coefficient of rank correlation, 7, be- The structure of the current speed and direction at 
tween the series and the x-axis values in order to 5 m (where the greatest number of data values were 
detect the presence of a linear trend (Kendall & Stuart collected) presented 2 distinct patterns associated with 
1966) [Kendall's coefficient of correlation was used in an increase of the wind speed at Caplan and with 

the rise of a heavy swell at Grande- 

N 
Riviere. 

2.5 m S m At Caplan, the time series could be di- 
vided in 2 parts according to the wind 
speed, which ranged from 1.9 m S-' dur- 
ing the first 27 profiles to 6.6 m S-' on and 

J h after the 28th profile (Lagadeuc et al. 
W E W F m E 1997). For all the profiles, current speed 

Is V and direction were tidally dependent 
(Lagadeuc et al. 1997). However, as cur- 

7.5m I N  10m I N  rent direction was always directed to the 
1 1 west-northwest during flood and to the 

east-southeast during ebb, current 
speed depended on wind. During the 

J km first 27 profiles, current speed was less 

W E W E than 5 cm S-' during flood, and approxi- . 
mately 40 to 50 cm S-' during ebb. Dur- 
ing windy profiles, highest speeds were 
observed during flood (around 15 cm 
S-'), while during ebb, current speeds 

t t were approximately half this value (La- 
gadeuc et al. 1997). 

At Grande-Riviere, current speed 
and direction were not significantly 
tidally dependent (autocorrelation, p 
0.05). However, before the swell (i.e. 
the first 29 profiles) the current was 

17.5 1' 20 m /' consistently directed to the north- 
I 1 northeast with a speed around 6 to 8 cm 

S-', whereas during the swell (on and 
after the 30th profile), the speeds were 
slightly higher (around 15 cm S-') with a 
west-southwest direction. 

The vertical structure of the water 
column also presented 2 distinct pat- 

Fig. 2. Eulerian resldual current In relation to depth at Caplan terns. At Caplan, these 2 patterns are 
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In vivo fluorescence 

perceptible from an unidirectional drift 2.5 m N N 

to the northeast which is stopped by 

In vivo fluorescence exhibited a vertical gradient at 
Caplan during the first part of the time series in relation 
to the stratification of the water column (Raby et al. 
1994). During the second part of the time series, the 
vertical gradient was destroyed by water column mix- 
ing, and phytoplankton were evenly distributed. A fluo- 
rescence maximum was observed during the first part 

the action of wind at 2.5 m (Fig. 2). For 
the other depths, a general pattern was 
observed for the effect of tide and wind 

2 km 
on eulerian residual currents: south- 
eastward drift followed by northwest- 

S .  ward drift. Moreover, the magnitude of 
drift decreased near bottom, where the 

m N 
northwestward drift due to wind was 
stronger than the southeastward drift 

of the time series in the surface layer over the thermo- 
cline and was more than twice as large as the maximum 
observed at Grande-Riviere, where in vivo fluores- 
cence was always homogeneously distributed. 

Moreover, the computation of the cumulative sum 
series in both cases pointed out 2 distinct patterns of 
variability. At Caplan, except after profile 31 when the 
water column was homogenised by wind, we found the 
following recurrent trend: an increasing slope during 
flood which characterised a group of values lower than 
the mean, followed by a decreasing slope during ebb 
(Fig. 6a) that characterises some values higher com- 
pared to the whole series. Chlorophyll a (chl a )  and in 
vivo fluorescence being highly correlated, as shown by 
Raby et al. (1994) on the same set of samples, in vivo 
fluorescence fluctuations can be related to the fluctua- 
tions of phytoplankton biomass. 

In contrast, at Grande-Riviere, where hydrodynamic 
conditions were weaker, we found a die1 periodicity, 

I 

d E W p J. 
2 h 

S 

due to tide (Fig. 2).  At Grande-Riviere, 
except at 2.5 m where the drift associ- 

E W E ated with the swell was west-north- z ~m 2 h 

west (Fig. 3), eulerian residual currents 
displayed similar patterns of variation S - S - 
whatever the depth: the north-north- 

E 

east drift associated with tide before 12-Sm N 

the swell was west-southwest there- 

N 

N 

after (Fig. 3). As previously observed at 
Caplan, the amplitude of drifts de- 
creased with depth, and the drift asso- 'W -A E w - E 

2 km 2 kJn 
ciated with the swell was always 
higher than the tidal drift (Fig. 3). In all 

S S 
cases, the drifts observed at Grande- 
Riviere were always 2 or 3 times N 
smaller than those observed at Caplan. 

During the first part of the cruise, 

N 

alternative variations in intensity of 
stratification were tidally dependent at 

W - E W - 
2 h Caplan (Fig. 4a). Thereafter, progres- 2 km 

sive homogenisation was observed 
with the decrease of E,. Dynamic S 

stability Ri showed values less than 
Fig. 3.  Eulerian residual current in relation to depth at Grande-Rivihre 

0.25 at the surface and near the bottom 
during windy profiles (Fig. 5a), which 
suggest a dynamic destabilisation (i.e. mixing) of the 
water column as opposed to the advection of mixed 
water. In contrast, at Grande-Riviere the water column 
was always homogeneous (i.e. mixed) with very low 
values of E, (Fig. 4b) and values of dynamic stability Ri  
less than 0.25 at the surface during the 52 profiles and 
near the bottom, especially for profiles during swells 
(Fig. 5b). 
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Fig. 4. Potential energy during the time series at (a) Caplan 
and (b) Grande-Riviere. 7 and I indicate high tide and low 

tide, respectively 
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shown by an increasing slope during nighttime (1.e. 
from 2 h before sunset to 2 h before sunrise) and a 
decreasing slope during daytime (Fig. 6b). That be- 
haviour might correspond to the decrease of in vivo 
fluorescence around the solar midday, corresponding 
to photoinhibition (Falkowski & Kiefer 1985), linked to 
a decrease of primary production as observed by 
Lizon et al. (1995) in low turbulent conditions and sup- 
ported by the weak correlation between fluorescence 
and chl a (Raby et al. 1994). 

Profile number 

t r t t r t s  I 

'O 1 DayINlghl 

(b) Grande-Riviere 

Profile number 

Fig. 6. Cumulative sum series of in vivo fluorescence at 4 m 
depth for (a) Caplan and (b) Grande-Riviere anchor stations. 

f and 1 indicate high tide and low tide, respectively 

Semivariogram analysis and fractal dimensions 

The double logarithmic semivariograms for tempera- 
ture, salinity and in vivo fluorescence time series at  
Caplan and Grande-Riviere together with their best 
fitting lines are given in Figs. 7 & 8, respectively. Only 
scales less than half of the total length of the data set 
are shown, because greater distances are more af- 
fected by low sample sizes and spurious properties 
of the data (Journel & Huijbregts 1978). 

t t t  

Profile number 

Fig. 5. Richardson number (Ri) in relation to depth and time at (a) Caplan and (b) Grande-Rivlere. Hatched iso-Rj basins 
correspond to Ri < 0.25. 1 and I indicate high tide and low tide, respectively 
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At Caplan, temperature, salinity and in vivo fluores- Indeed, semivariogram analyses conducted separately 
cence semivariograms exhibit similar behaviours. In on the stratified and the mixed part of the series re- 
the sub-surface (2 m; Fig. 7), their linearity over the vealed very similar linear behaviours (Fig. 9) which a re  
whole range of time scales illustrates temporal depen- indistinguishable from each other (I-test, p > 0.05; Zar 
dence, suggesting that the same process can be 1984) and from the linear behaviour observed from the 
regarded as the source of physical and biological semivariogram analysis conduced on the whole series 
patterns. This process can then be associated with the (covariance analysis, F-test, p > 0.05). These results 
general drift to the northeast which clearly dominates thus suggest a n  extreme similarity-at a given depth- 
the eulerian residual circulation pattern (cf. Fig. 2). between the effects of different physical forcings such 
From 5 to 11 m (Fig. 7); semivariograms exhibit a linear a s  wind or tide on the temporal structuration of vari- 
behaviour as the temporal lag increases up to 8 h. This ability of physical and biological parameters. 
behaviour is restricted to maximum time scales of 5 h At Grande-Riviere, the situation is quite different 
for deeper layers. The scales of temporal dependence (Fig. 8).  Temperature semivallograms are clearly linear 
(i.e. semivariograms' linearity) can then be associated over the whole range of scales from the sub-surface to 
with characteristic time scales which are clearly depth- 15 m depth. At deeper layers the linearity is only 
dependent (Fig. 71, and can be related to the progres- observed for time scales increas~ng up to 5-6 h .  Semi- 
sive change in direction and intensity of the eulerian variograms of salinity are linear from the sub-surface 
residual circulation (Fig. 2 ) .  The seniivariograms are to 15 m depth as the temporal lag increases up to about 
not influenced by that change of vertical structure, in 16-18 h and linear deeper for time scales of about 6-8 h.  
spite of the transition observed between stratification As previously suggested at  Caplan, the lost of scale 
and dynamic homogenisation of the water column dependence of semivariograms seems to be associated 
due to the northwestward drift induced by the wind. with the vertical structuration of the residual circula- 

tion in direction and intensity (Fig. 3). 
On the other hand, the differences ob- 

0.5 served in the time scales at  which semi- 
variograms of temperature and salinity 

0.0 - lose linearity could be related to the 
.... S 4 . 5  

> ... .,< i'.... specificity of salinity which, unlike 
_ .  -. on * " '  

temperature, is influenced by river dis- ....... 0 -1.0 
-l .... charge and mixing with water masses 

-1 .5  -1.5 coming from outside the bay (Le Quere 
5 m 

-2.0 . . . . . . . . . . . . . . . . . . .  
1992, ~ o n a r d e l l i  e t  al. 1993) and ex- 

-0.2 0.2 0.6 1.0 1.4 -0.2 0.2 0 6 1 .0  1.4 hibits a general temporal evolution 
more irregular than temperature, es- 
sentially deeper than 15 m (Le Quere 

0.0 
1992). Semivariograms of in vivo fluo- --. . 

-0.5 ..... rescence were linear for time scales of 
..a. 6-8 h from the sub-surface to 17 m 

. . . . depth, and this specific behaviour of the 
-1.5 fluorescence semivariograms can be 

11 m 

-2 0 . . . . . . . . . . . . . . . .  related to the biological activity which 
-0.2 0.2 0.6 1.0 1.4 4 . 2  0.2 0.6 1.0 1.4 is quite dominant (i.e. die1 periodicity; 

cf. Fig. 6 a ) ,  in comparison with the 
variability observed at  Caplan which is 
mainly dominated by physical pro- 
cesses (i.e. tidal periodicity; cf. Fig. 6b). 

In both cases, log-log linearity of 
scale-invariant parts of semivariograms 
is very strong, with coefficient of deter- 
mination (r2) ranging between 0.948 and 
0.998 for temperature, 0.855 and 0.999 

Log l? Log h for salinity, and 0.905 and 0.999 for in 

Fig. 7. Double logarithmic semivariograrns of in vivo fluorescence (*), tempera- vivo fluorescence at Caplan and 0.749 

ture (a) and salinity (A) for Caplan anchor station (curves have been vertically and 0.997 for temperature, 0.855 and 
offset so as not to overlap). Straight dashed lines show the scaling range 0.997 for salinity, and 0.959 and 0.999 
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fractal dimensions DF of temperature, 
0.0 salinity and in vivo fluorescence ex- 

hibited different patterns of variation ._ . - > .... E .a.-  .. .* within stations and between stations. 
M - 1  0 
C Thus, we showed that there were sig- 
-1 -1.5 

..g. nificant differences between salinity, 
-2.0 ..a'. 

2 m 5 m temperature and in vivo fluorescence 
-2.5 -2.5 

o *  O,h I O,Z I 
fractal dimensions for either station 
(Kruskal-Wallis test, p < 0.05). How- 
ever, at Caplan mean fractal dimen- 

0.0 .... .-- 
A . C ' 

.. - - sions D, of temperature, salinity and 
--C -0.5 

. i 
in vivo fluorescence were significantly 

. A. - - I .o different from each other (Jonckheere 
..a.. 

..a.. 
-1.5 ....a' test, p < 0.05; Siege1 & Castellan 1988), 

* . . . . . . m .  

-2.0 -2.0 .... whereas at Grande-Riviere, mean frac- 
11 m 

-2.5 -2.5 
tal dimensions of salinity and in vivo 

-0.2 0.2 0.6 1.0 1.4 -0.2 0.2 0.6 1.0 I .  f l u ~ r e ~ c e n c e w e r e n o t s i g n i f i c a n t l y  
different but were both significantly 
different from that of temperature 

. '  ..... . . . * .'i .A.. ..-.- 
.= .a. (Jonckheere test, p > 0.05 and p < 0.05, 

. ..- A.. 
->-  .-.. .... respectively). On the other hand, mean 

, .a..* fractal dimensions of salinity and in 
vivo fluorescence were significantly 

-2.0 
14 m 17 m different between the 2 stations (Wil- 

-2.5 -2.5 coxon-Mann-Whitney U-test, p < 0.05), 
-0.2 0.2 0.6 1.0 1.1 -0.2 0.2 0.6 1.0 1.1 

Log 12 Log h whereas there was no significant dif- 
ference between mean fractal dimen- 

Fig. 8. Double logarithmic semivariograms of in vivo fluorescence (*), tempera- sions of temperature (Wilcoxon-Mann- 
lure (m) and salinity ( A )  for Grande-Riviere anchor station (curves have been ver- whitney v-test, p > 0.05). Fractal 
tically offset so as not to overlap) Straight dashed lines show the scaling range dimension DF plotted as a function of 

depth (Fig. 10) leads to further conclu- 
for in vivo fluorescence at  Grande-Riviere. The mean sions. At Caplan (Fig. lOa), DF of temperature, salinity 
fractal dimensions of temperature, salinity and in vivo and in vivo fluorescence exhibited similar patterns of 
fluorescence were respectively 1.54 (+ 0.02 SE), 1.69 variation, with a maximum value between 12 and 14 m 
(+ 0.03 SE) and 1.48 (+ 0.02 SE) at Caplan, and 1.5 depth, suggesting the influence of internal waves. In 
(k 0.03 SE), 1.57 (k 0.02 SE) and 1.59 (+ 0.01 SE) at  contrast, at Grande-Riviere the situation was quite 
Grande-Riviere. The mean empirical estimates of the different (Fig. lob): fractal dimensions of temperature 

and in vivo fluorescence exhibit respectively maximum 

0.4 and minimum values around 10 m depth, while DF 
of salinity exhibited a tendency to decrease from the 

0.2 : * : 0  0 

.o . . ' I 
sub-surface to bottom. 
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0 0.2 0.4 0.6 0.8 I 

Log h 

Fig. 9. Double logarithmic sernivariograrns of temperature at 
4 m depth for Caplan anchor station before (0) and after (m) 

destratification by wind 

DISCUSSION 

The empirical estimates of the mean fractal dimen- 
sions DF showed that the mean DF of temperature is 
smaller than that of in vivo fluorescence and salinity at 
Caplan. This can be related with the processes likely to 
influence the variability of both temperature (T) and 
salinity (S). The T-S diagram (Fig. I l a )  suggests an 
almost linear mixing of relatively warm (T > 14°C) 
and weakly saline (27.5 < S < 29.5%0) waters (A), m t h  
colder (T < 14°C) more saline (S > 29.5%) waters (B), 
characteristic of the eastern part and to the mouth of 
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Depth (a) Caplan 

can then be suggested as being 
caused by the strengthening of the 
influence of the Gaspe current (Bug- 
den 1981) on the northern coast of the 
Baie des Chaleurs, where it is usually 
weak, indeed lacking, as previously 
observed (Le Quere 1992, Bonardelli 
et al. 1993). The associated time scales 
are then small compared with those 
associated with the seasonal forcing 
on temperature variability, leading to 
a perceived higher homogeneity. 

The different fractal dimensions 
observed between stations lead to 
further conclusions. Mean fractal di- 
mensions of temperature are not sig- 
nificantly different, whereas mean 
fractal dimensions of salinity and in 
vivo fluorescence are significantly dif- 
ferent at  Caplan to those at Grande- 

"F 
2.00 1.00 1.25 1.50 I .  

Fig. 10. Fractal dimensions (DF) of in vivo fluorescence (*), temperature (m) and Riviere. This suggests that the physi- 
salinity ( A )  in relation to depth for (a) Caplan and (b) Grande-Riviere anchor cal forcings mainly atmospheric) 
stations. Straight broken lines correspond to the theoretical case DF = -5/3 responsible for the temperature vari- 

ability are on an equivalent space- 
the bay, respectively (Legendre 1987). This distribu- time scale at  Caplan and Grande-Riviere. On the other 
tion of water masses is associated with the cyclonic hand, salinity appears to be associated with more 
circulation of the Baie des Chaleurs observed during homogeneous space-time patterns at Caplan than at 
the sampling experiment (Le Quere 1992) and has 

Depth (b) Grande-Rivikre 

2 .  

4 .  

6 .  

8 .  

10. 

12. 

14. 

16. 

18. 

20 - 

already been suggested to potentially modify the water 13  0 

mass properties of the Baie des Chaleurs by  vertical 
12.5 

mixing (Legendre & Watt 1970, Legendre 1987). More- 
over, temperature fluctuations are mainly dependent 12.0 

on atmospheric (i.e. seasonal) warming and cooling 
11.5 whereas salinity is mainly influenced by river and pre- 

cipitation runoffs leading to smaller scales variations. 11.0 
The intermediate value of the fractal dimension of in 
vivo fluorescence might then be regarded as a result of 10.5 

2 the interactions between these 2 different forcings. At 3 ;;; I n n  

O a . - - . - . - ' . , -  , - . .  
I 
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- 
: (a) Caplan 
. . . . a . ~ . ~ ~ . . . ~ . ~ . . . ~ ~ ~ ~ ~ ~ ~ ~ . . c  

Grande-Riviere the mean fractal dimension of temper- 
B%\ 

" 28.4 2 8 6  28.8 29 29.2 29.4 29.6 29.8 
ature is smaller than those of salinity and in vivo fluo- K E 17.0 
rescence, which are not significantly different, indicat- 
ing that variability of biological processes is mainly 

g 
12.5 

determined by salinity and is characterised by short- 
12.0 range variations in comparison with temperature. 

Indeed, the T-S diagram (Fig. l l b )  shows the strong 11.5 
influence of weakly saline (S < 29.5%0) waters, differ- 
ent from the water masses typical of the mouth of the 11.0 

bay (B, Fig. l l a )  and associated with the rise of a west- 
105 

southwest heavy swell after the 30th profile (cf. Fig. 3) 
of the sampling experiment. The properties of these 1 0 0  

- 

- 

- 
o 

- 

- 
: (b) Crande-Rivikre 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

water masses (i.e. in terms of temperature and salinity) 28.4 286 28.8 29 29.2 29.4 29.6 29.8 

are roughly similar to those observed in the upper Salinity 

water masses Of the of St. Lawrence' Canada Fig. 11. Temperature-salinity diagrams for (a) Caplan (for ex- 
(Lauzier 1957, Dickie & Trites 1983). The shift in the planation of A and B see 'Discussion') and (b) Grande-Rivi&re 
main current direction associated with the rising swell anchor stations 
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Grande-Riviere (i.e. DF was greater at Caplan, show- 
ing the predominance of short-range processes at 
Caplan). This last observation agrees with our previ- 
ous observdtions concerning the different forcing 
processes at Caplan and Grande-Rlviere. In contrast, 
in vivo fluorescence shows a more heterogeneous 
structuration at  Caplan than at  Grande-Riviere (i.e. DF 
greater at Grande-Riviere), indicating the prevalence 
of short-range variability and thus of biological 
processes when the hydrodynamical forcings are less 
developed (cf. Figs. 2 to 5). 

Comparison of the estimated mean fractal dimensions 
of temperature, salinity and in vivo fluorescence with 
those of other environmental data shows that the varia- 
tions of these variables are always more homogeneous 
than those of landform (Mandelbrot 1977), seismicity 
frequency (Khattri 1995), river discharge, geological 
sediment and climate data (Mandelbrot & Wallis 1969), 
and more heterogeneous than the variability perceived 
in soil properties (Burrough 1981, 1983a), spatial distri- 
bution of plant communities (Palmer 1988) and spatlal 
distribution of marine birds and their zooplanktonic 
preys (Russel et al. 1992). We have no clear pheno- 
menological explanation for these differences, though 
empirical D, might be directly linked to the nature of the 
processes generating the observed patterns. Indeed, 
geological fluctuations associated with earthquake 
occurrence are associated with large-scale processes 
(in time or space; e.g.  periods of about 100 yr; see e.g. 
Khattri 1995) and lead to low fractal dimensions corre- 
sponding to long-range trends and thus to a great 
heterogeneity. In contrast, fluctuating data associated 
with smaller-scale processes, such as turbulent motion, 
widely recognised as a controlling factor of plankton 
distribution (Legendre & Demers 1984, Mackas et al. 
1985), are expected to lead to higher fractal dimensions 
(Burrough 1981, 1983a). Our empirical DF can also be 
compared to the fractal dimension Dg estimated from the 
theoretical spectral exponent P ( P  = 5/3)  characterising 
isotropic and homogeneous turbulent processes (Kol- 
mogorov 1941, Obukhov 1941). DD is estimated as Da = 
2 - (P - 1)/2 (Feder 1988, Schroeder 1991). From a 
staiistical viewpoint, most DF are significantly different 
from Da (modified t-test; Scherrer 1984). Moreover, as 
previously suggested, DF values reflect the balance of 
short- and long-range variations, and therefore the 
differences observed between DF and DD are associated 
with the theoretical spectral exponent P, as the differ- 
ences observed in the empirical estimations of P might 
be related to the different space-time scales of the re- 
lated external physical forcings (Platt 1972, Denman & 
Platt 1975, 1976, Platt & Denrnan 1975, Powell et al. 1975, 
Fasham & Pugh 1976, Denman et al. 1977, Horwood 
1978, Lekan & Wilson 1978, Demers et al. 1979, Wiegand 
& Pond 1979, Seuront et  al. 1996a, b, Seuront 1997). 

At Caplan, no differences could be observed in the 
fractal dimensions of the data from the first and second 
day despite the increase in wind speed. Generally 
speaking, mixing processes in the ocean are responsi- 
ble for the transfer of kinetic energy from the largest to 
the smallest scales, spanning several orders of magni- 
tude from the basin scales down to the viscous scales 
(i.e. the Kolmogorov length scale, hk) at which turbu- 
lent energy is diss~pated as heat by molecular viscosity 
(Denman & Gargett 1995). The range of spatial scales 
over which turbulence, or at least mixing, occurs is 
intrinsically linked to the dissipation rate of turbulent 
kinetic energy (E) by the way of the Kolmogorov length 
and time scales hk and ~k [hk = ( v ~ / E ) ' ' ~  and T~ = (v/&)lI2, 
where v is the kinematic viscosity) and thus to the 
hydrodynamic conditions. The dissipation rate of wind 
turbulent kinetic energy E (m2 s - ~ )  was estimated as E = 
(5.82 X 10-"W3/z, where W is the wind speed (m S-') 

and Z the depth (m) (MacKenzie & Leggett 1993). This 
dissipation rate, averaged over the water column for 
the 2 periods (i.e. before and after the increase in the 
wind speed), increased from 7.18 X lO-' m2 s-3 to 3.01 X 

10-' m2 S-! leading to a decrease in the Kolmogorov 
length and time scales hk and T* (from 3.43 to 1.35 mm 
and from 11.78 to 1.82 S, respectively) and thus to an 
increase in the range of time and space scales affected 
by turbulent motions. However, this increase in the 
range of turbulent space-time scales is far from being 
perceptible from our hourly sampling interval which 
can thus be proposed to explain the non significant dif- 
ferences between fractal dimensions before and after 
the destratification of the water column by wind (cf. 
Fig. 9) and thus does not allow any inferences about 
the effects of varying hydrodynamic conditions on the 
structure-in terms of homogeneity or heterogeneity, 
and thus in terms of short- or long-range variability- 
of this pelagic environment. Moreover, the structure 
of phytoplankton biomass appears to be independent 
of the concentration since a decrease of 40% of the 
total biomass between the first and the second part of 
the cruise (Raby et al. 1994) was not associated with 
a change in the estimated fractal dimension or the 
characteristic scale-breaking observed in the semi- 
variograms. Furthermore, as the phytoplankton as- 
semblage was very similar over the sampling period 
(Mingelbier 1995), we cannot test any potential spe- 
cific effects on fluorescence fractal dimensions. 

On the other hand, it is worth noting that the vertical 
distribution of the mean DF of temperature, salinity 
and in vivo fluorescence at Caplan (Fig. 10a) can be 
related to the time-averaged vertical distribution of the 
Richardson number, Ri (Fig. 12a). The minimum and 
maximum values of DF can be associated respectively 
with the least stable (i.e. low Ri, surface layers and 
near the bottom) and stable (i.e. high Ri, mid-depth) 
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water masses. Thus, in surface layers and near the bot- Beyond the numerical values of fractal dimensions, 
tom, where mixing processes are more developed, the semivariogram analysis can also provide information 
low dynamic stability leads to low fractal dimensions about the scaling behaviour of a given process. Thus, 
showing-at the time-space scales of the study-the the fractal dimension is not necessarily a constant over 
predominance patterns irregularly distributed in space varying sampling intervals (Palmer 1988). We cannot 
and time and thus, characterised by long-range varia- test the scale invariance of temporal patterns of tem- 
tions. On the other hand, at mid-depth, the greater perature, salinity and in vivo fluorescence in that way 
dynamlc stability tends to damp out any kind of fluc- because of the small number of data values available 
tuations, leading to less structured patterns with close in the analysis and because the semivariance does not 
scales of variation, characterised by higher fractal always increase monotonically with increasing lag 
dimensions and suggesting a potential aliasing of (Fig. 7), but appears to increase in a series of steps 
internal waves. The situation is quite different at (Figs. 7 & 8). In the case of ideal fractals, like Brownian 
Grande-Riviere (Fig lob),  where the maximum value fractal functions (Burrough 1983a, b),  the semivario- 
of the mean RI (Fig. 12b) can be related to the maxi- gram shows clear range and sill (e.g. see Phillips 1985 
mum and minimum values of the fractal dimensions of for further details), leading to the assertion that the 
temperature and in vivo fluorescence, respectively. data show at least local second-order stationarity 
This last observation shows that in weak hydrody- (Journel & Huijbregts 1978). Increasing the size of the 
narnic conditions in vivo fluorescence exhibits a very inter-sample distance, however, frequently leads to 
specific behaviour, far from physical control, showing observation of increased sernivariance (Burrough 
that the biological activity and its associated variability 1983a) implying that new scales of variation have been 
are more developed in stable conditions (i.e. high Ri), encountered. This stepwise behaviour (i.e. changes in 
In the case of salinity, we have no clear explanation to fractal dimension when shifting between scales) 
propose for the decreasing tendencies of the mean implies that in place of true self-similarity, tempera- 
fractal dimension which can, however, be related to ture, salinity and in vivo fluorescence show only partial 
the interactions between the characteristic water self-similarity over limited range of scales separated by 
masses of the mouth of the bay and the water masses transition zones (Mandelbrot 1977, 1983), where the 
advected by the west-southwest drift induced by the environmental properties or constraints acting upon 
swell. Consequently, the differences observed be- organisms are probably changing rapidly (Frontier 
tween our low and high empirical DF can be explained 1987; also e.g.  the landscape patterns analysed by 
in terms of different range of scales perceived in Krummel et al. 1987 and Palmer 1988). In the Baie des 
pattern variability and thus in the complexity of the Chaleurs (i.e. at Caplan and Grande-Riviere), the 
pattern structure. departures from true self-similarity seem to be associ- 

ated with the progressive change in 
Ri 

Ri l0  
the eulerian residual circulation with 

15 
depth (cf. Figs. 2 & 3). Indeed, the 
change of direction of the eulerian 
residual circulation can be suggested 
as a possible source of scale breaking 
between scale dependence and scale 
independence, in so far as the loss 
of self-similarity of semivariograms 
seems to be associated with the depth, 
showing a reversal in the direction of 
the residual circulation of water 
masses (Figs. 2 & 3). These factors, 
their combinations and/or the interac- 
tions with water masses coming from 
river discharge or outside the bay can 
be proposed as possible sources 
of variability and thus could be respon- 
sible not only for the different time 
scales of temporal dependence of vari- 

Depth Depth ogram analysis but also for the absence 

Fig. 12. Time-averaged Richardson number (RI) In relation to depth for Of scale-invariant structuration after 
(a) Caplan and (b) Grande-Riviere anchor stations the scale breaking. These departures 
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from true self-similarity, rather than the precise 
numerical values of the fractal dimension, may be of 
most interest to ecologists, because such departures 
indicate variation in the sources of biological patterns 
(Burrough 1983a, Bradbury et al. 1984, Russel et al. 
1992). As an example, the critical range represented by 
the well-known 'Platt-knee' corresponds to the transi- 
tion zone (at a scale between 0.2 and 20 km; Platt & 

Denman 1975, Denman & Platt 1976, Denman et al. 
1977) between scales dominated by physical processes 
and larger scales dominated by the combination of bio- 
logical activities, such as growth, sinking, or commu- 
nity interactions. However, unlike the previous case, 
our results do not show any characteristic scales which 
can be obviously related to a well-known physical or 
biological transition zone. 

To date, most studies using fractal approaches have 
focused on phenomena which are temporally invariant 
over the scale of the study (e.g vegetation patterns, 
Palmer 1988; coral reefs structure, Bradbury & Reichelt 
1983, Rradbury et al. 1984; or geological formations, 
Burrough 1983a) and we are not aware of any reports 
of a temporal fractal approach. However, our sampling 
experiments have been conducted a t  anchor stations 
(i.e. an eulerian point of view), so that temporal and 
spatial components of variation are inextricably con- 
founded in our data. This confounding of space and 
time has already been pointed out by Russel et al. 
(1992) in a study of the 'spatial' distributions of marine 
birds and their food and might be suggested as  a pos- 
sible source of bias in the estimation of fractal dimen- 
sions. Nonetheless, the estimated fraction dimensions 
are consistent with the global physical structure of 
both stations and can thus be regarded as a useful 
index of the complexity perceived in time series of 
temperature, salinity and in vivo fluorescence. 

These results, suggesting relationships exist between 
the vertical structure of the water column (i.e. dynamic 
stability and residual circulation), fractal dimensions 
and the characteristic scale breaking between temporal 
dependence and independence thus lead us to consider 
a physical control of temperature, salinity and in vivo 
fluorescence variability at Caplan associated with high 
hydrodynamic conditions and a slightly more complex 
situation at Grande-Riviere, where, probably because 
of the weak hydrodynamism and the peculiar pattern of 
water masses circulation, temperature, salinity and in 
vjvo fluorescence exhibit more specific patterns of 
variations. However, it can also be suggested that the 
differences observed between fractal dimensions may 
be ca.used by processes exhibiting very speci.fic inter- 
mittent behaviours. Indeed, previous studies conducted 
on zooplankton data (Pascual et al. 1995), temperature 
and in vivo fluorescence (Seuront et al. 1996a, b) have 
shown that the best tool to describe intermittent fields is 

provided by multifractal theory. Multifractal analysis, 
inadequate in the present study because of the small 
number of data available, can be regarded as a statisti- 
cal generalisation of fractal theory (Mandelbrot 1977, 
1983) leading to the consideration of multifractal fields 
as a hierarchy of sets each with its own fractal dimen- 
sion. Thus multifractal fields are described by scaling 
relations that require a family of different exponents, 
rather than the single exponent of 'traditional' fractal 
patterns, which then characterise variability in a very 
limited way. Furthermore, despite the apparent com- 
plexity induced by a multifractal framework, using the 
universal multifractal formalism (Schertzer & Lovejoy 
1987, 1989)-recently successfully applied to oceanic 
fields (Seuront et al. 1996a, b,  Seuront 1997)-the 
distribution of a scalar field can be wholly described 
with only 3 indices, which summarise the whole statis- 
tical behaviour from larger to smaller scales. 

Nevertheless, fractals provide a workable middle 
ground between the excessive geometric order of 
Euclid and the geometric chaos of roughness and frag- 
mentation (Mandelbrot 1989), and appear to be par- 
ticularly well adapted to the study of multiscale envi- 
ronments such as pelagic ecosystems. However, even 
though the results of this fractal analysis should have 
probably been more illustrative by considering a finer 
grain and a greater extent, which are often regarded as 
some of the main aspects of the scales of a study (Le- 
gendre & Fortin 1989, Wiens 1989, Jarvis 1995), they 
are consistent with more classical techniques concern- 
ing the time-space physical structure of the studied 
environments, and thus appear to be quite satisfactory. 
Furthermore, the value of geostatistical analysis is that 
different and complex dynamics can be described in a 
common format that allows direct compansons to be 
made among systems. One should be aware, however, 
that the generic name 'fractal dimension' deals with 
different concepts of dimensions: topological dimen- 
sion, Hausdorff dimension, self-similarity dimension, 

box-counting dimensions and information dimension 
among others. They are all related, sometimes they are 
the same and sometimes different, and that can be con- 
f u s i ~ g  even for a research mathematician (Peitgen et 
al. 1992). Practically, for ecologists, this means that at 
present it is only possible to compare different esti- 
mates of fractal dimension when the same calculation 
technique is used. There is, therefore, a need to cali- 
brate different methods of calculating fractal dimen- 
sions and until this is done, comparisons of DF values of 
similar phenomena reported in the literature, obtained 
with different techniques, are of limited value. 
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