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Abstract Wildlife tourism has become increasingly

popular and is one of the fastest growing sectors of the

tourism industry. A radio-acoustic positioning system was

deployed to monitor the fine-scale movements of 21 white

sharks (Carcharodon carcharias) and investigate the

effects of shark cage-diving activities on their swimming

behaviour and space use. This study contributes towards

improving our understanding of the complex relationship

between wildlife tourism and its effects on sharks, and

assesses how tourism targeting sharks affects behaviour at

a finer spatial scale than previously investigated. Our study

demonstrated that shark cage-diving operators (SCDO)

influenced the fine-scale three-dimensional spatial distri-

bution and the rate of movement of white sharks at the

Neptune Islands. White sharks stayed more than 30 m

away from the SCDO on 21 % of the days detected, but

spent a significant amount of time in close proximity to the

SCDO on the remaining days. Individual variation was

detected, with some sharks behaviourally responding to

SCDO more than others. The degree of variation between

individual sharks and the different levels of interaction

(e.g. presence, proximity to SCDO, and consumption of

tethered bait) highlights the complexity of the relationships

between SCDO and the effects on sharks. To improve our

understanding of these relationships, future monitoring of

shark cage-diving operations requires proximity to SCDO

to be recorded in addition to the presence within the area.

Further work is needed to assess whether the observed

behavioural changes would affect individual fitness and

ultimately population viability, which are critical infor-

mation to unambiguously assess the potential impacts of

wildlife tourism targeting sharks.

Introduction

Globally, wildlife tourism is considered one of the fastest

growing sectors of the tourism industry (Scheyvens 1999;

Wearing and Neil 2009). One of the main arguments for

the continuing development of wildlife tourism is that it

helps to secure long-term management and conservation of

wildlife (Higginbottom and Tribe 2004; Newsome et al.

2005), by influencing the conservation knowledge, atti-

tudes, and behaviour of tourists (Ballantyne et al. 2007).

Wildlife tourism has, however, also been considered a

threat to wildlife and ecosystems (Duffus and Dearden

1990; Shackley 1996), for a range of taxa including avian,

terrestrial, and marine organisms (Steven et al. 2011; Worlf

and Croft 2010; Bejder et al. 2006). Documented impacts

vary from short-term changes in physiology (e.g. temper-

ature, heart rate, or stress hormone secretion) or behaviour
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(e.g. foraging, breeding, vigilance, and evasion) of indi-

vidual animals to long-term effects, such as increased

mortality or reduced breeding success (for review, see:

Green and Giese 2004; Orams 2002; Green and Higgin-

bottom 2001).

The conservation benefits of wildlife tourism are possibly

greater for potentially dangerous animals, such as sharks,

because of the negative public image they suffer from

(Driscoll 1995). This is critical as negative perceptions

about sharks and shark attack risk have been identified as

one of the greatest barriers for global shark conservation

efforts (Ferguson 2006). Scientists, conservation societies,

policy makers, and even fishers have long expressed con-

cerns about the conservation status of shark populations

(Lynch et al. 2010); yet, shark conservation has only rela-

tively recently emerged as a global policy priority (Techera

and Klein 2011). Additionally, the logistical difficulties

associated with studying large marine predators have led to

their responses to wildlife tourism remaining poorly

understood. Nevertheless, research on the impacts of tour-

ism on sharks and rays has recently emerged, with studies

investigating the physiological impacts of provisioning

(Semeniuk et al. 2007; Maljković and Côté 2011), changes

in seasonality, residency, or abundance due to berleying or

provisioning (Laroche et al. 2007; Meyer et al. 2009; Bruce

and Bradford 2013; Bruce et al. 2005; Maljković and Côté

2011; Clua et al. 2010; Brunnschweiler and Barnett 2013),

changes in vertical activity (Fitzpatrick et al. 2011), and

physical impacts of divers Barker et al. 2011a, b; Smith

et al. 2010). The effects of wildlife tourism on the fine-scale

movements of Elasmobranchs have, in comparison, been

overlooked. The lack of a uniform effect across species and

populations also suggests that findings cannot be general-

ised and may vary according to the frequency, location, and

type of activities, as well as the targeted species (Meyer

et al. 2009; Maljković and Côté 2011; Clua et al.2010;

Bruce and Bradford 2013).

Commercial white shark (Carcharodon carcharias)

cage-diving is expanding across the species’ range and now

occurs in Australia, South Africa, the United States of

America, Mexico (Guadalupe Island), and New Zealand.

This commercial activity is often justified by operators as

being beneficial to the conservation of the species through

educating participants and increasing levels of public

awareness regarding the need for the conservation of sharks.

However, the potential for cage-diving activities to nega-

tively impact white sharks represents a concern in some

jurisdictions (DEWHA 2010). There is still limited infor-

mation on the effects of cage-diving operations on white

sharks. In South Africa, a study conducted on the effects of

provisioning concluded that sharks were found closer to the

surface during berleying (Laroche et al. 2007). A trend of

decreasing response to berley and tethered baits with time

was also observed in some sharks, suggesting that habitu-

ation might be occurring (Laroche et al. 2007). In South

Australia, a study using acoustic telemetry presence–

absence data examined the residency of white sharks at the

Neptune Islands between 2001 and 2003, and concluded

that effects were localised, with some evidence that indi-

vidual sharks remained in shark cage-diving areas for longer

periods on days when operations occurred (Bruce et al.

2005). A more recent study was carried out to determine

whether there was evidence of behavioural change in white

sharks in response to the increase in the South Australian

cage-diving operations since 2007 (Bruce and Bradford

2013). This study showed increases in residency and dura-

tion of visits (defined as the number of consecutive days

with detections for any given shark during its residency

period), average number of sharks, and changes in the

temporal distribution of visits to match cage-diving opera-

tions (Bruce and Bradford 2013). These studies, however,

used acoustic telemetry that generated presence/absence

data, but did not provide information about the fine-scale

movements of white sharks or how their behaviour is

affected by proximity to cage-diving vessels.

Several studies have investigated the large-scale move-

ments of juvenile and adult white sharks and reported long-

distance migrations between temperate, subtropical, and

tropical habitats, as well as some temporal residency within

oceanic regions (Boustany et al. 2002; Bonfil et al. 2005;

Bruce et al. 2006; Weng et al. 2007; Domeier and Nasby-

Lucas 2008; Jorgensen et al. 2009; Duffy et al. 2012). The

fine-scale movements of white sharks are, however, still

poorly understood, with research mostly focusing on preda-

tor–prey interactions in the vicinity of seal colonies in the

Northern Hemisphere and on the South African coastline

(Laroche et al. 2008; Klimley et al. 2001b; Martin et al. 2009;

Domeier et al. 2012; Le Boeuf 2004). Several movement

patterns have been described in situations when berleying

takes place, including downstream circling, island patrolling,

and inter-island patrolling (Klimley et al. 2001b; Strong et al.

1992). Yet, a quantitative comparison of white shark fine-

scale movement between berleying and non-berleying periods

has never been undertaken. Such information is important to

consider when determining the effect of wildlife tourism, as

changes in behaviour can affect energetic budgets and have

long-term effects to the targeted population (Green and Giese

2004; Orams 2002; Lusseau et al. 2009; Kerbiriou et al. 2009).

Using a radio-acoustic positioning system, we estimated

the locations of white sharks tagged with acoustic trans-

mitters to determine their fine-scale movements and prox-

imity to cage-diving vessels. Our objective was to compare

the vertical and horizontal distribution, as well as rate of

movement (ROM) of white sharks during periods of shark

cage-diving operations to periods when no operators were

present at the dive sites.
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Methods

Study site and shark cage-diving operators (SCDO)

The North Neptune Islands group (35�149S; 136�049E) is

part of the Neptune Islands located near the approach to

Spencer Gulf, about 30 km from the South Australian

mainland (Fig. 1). White sharks can be encountered at the

North Neptune Island group year-round. Individual sharks,

however, are temporary visitors to the site with limited

periods of residency (Bruce et al. 2005; Bruce and Brad-

ford 2013). Tracking has also revealed that sharks travel

from the Neptune Islands to areas across their Australasian

range (Bruce et al. 2006) and that some return on an annual

or more frequent basis (Bruce et al. 2005; Robbins 2007).

The Neptune Islands have been a site for commercial white

shark cage-diving since the late 1970s.

SCDO use a near-constant odour corridor of berley (or

chum) comprising mix of minced southern bluefin tuna

(Thunnus maccoyii) products including offal, oil, and blood

to attract sharks present to the cage-diving vessel. Tethered

baits of tuna sections or gills and entrails of up to several

kilograms are used to improve client experience by keeping

sharks within visual range of divers in the cage. Although

SCDO are not allowed to deliberately feed sharks, the bait

handler is not always fast enough to retract the bait. The

frequency of baits being taken is dependent on the speed of

shark approach, visibility, and vigilance of the bait handler.

Two cage-diving vessels that release berley and use

tethered tuna baits operated independently during the study

period (November 2009–September 2011). One operator

conducted regular day trips during which they arrived

around 9:30 and departed between 14:00 and 17:00

depending on shark activity and day length. Another

operator conducted three-day trips during which they

arrived around 11:00, stayed for 3 days, and left between

16:00 and 19:00 depending on shark activity and day

length. During normal operations, SCDO start berleying

and using tethered bait upon arrival and until departure. In

the case of the second operator who remains overnight,

berleying and the use of tethered bait are discontinued from

*17:00 until *8:00. Each operator recorded their arrival

and departure time, the times during which they used

berley, and their vessel position (latitude and longitude).

Operator data were recorded on mandatory daily logbooks

and purpose-designed logsheets for this study. A third

operator that does not use berley or tethered bait conducted

a small number of trips during the study period, but only

operated within the monitored area when tagged sharks

were present on two occasions. This operator was excluded

from the study due to the limited number of detections

obtained and different types of attractant used. Although

private boats can be present in the area, SCDO are the only

vessels allowed to use berley.

At the time of the study, SCDO were allowed to operate

every day and it was not possible to direct them to stay

away from the study site. Assessment of the number of

operator-free days from previous years suggested that the

study period would naturally include sufficient days during

which no operator would be present.

Vemco radio-acoustic positioning system

A Vemco radio-acoustic positioning (VRAP) system

(Vemco Ltd., Halifax, Canada) was deployed in the bay on

the south-east side of North Neptune Island (Fig. 1). The

VRAP consisted of three surface buoys deployed in a near

equilateral triangle (distances between buoys ranged from

324 to 340 m, area = 52,000 m2) and a shore station in

line of sight. Each buoy was equipped with a multi-direc-

tional hydrophone that detected the acoustic pulses emitted

by the transmitters. The received information was trans-

mitted to the shore station via radio signals, where the

geographic position (latitude and longitude) of each shark

was triangulated based on the arrival times of the acoustic

pulses to each buoy. A detailed description of how the

VRAP system estimates the position of tagged organisms is

provided by O’Dor et al. (1998) and Klimley et al. (2001a).

The buoy positions were calibrated by the VRAP at the

start of each deployment. The VRAP was set to listen to

Fig. 1 Location of a the North

and South Neptune Island

groups and b Vemco radio-

acoustic positioning (VRAP)

system deployment in relation

to the North Neptune Island

group. The green circle

represents the location of the

shore station; black circles

represent the location of the

three VRAP buoys; and red

circles represent the main areas

where shark cage-diving

operators anchored
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each selected frequency for 10 s with the number of fre-

quencies selected at any one time ranging from 1 to 9.

Previous studies have indicated that the precision of the

locations estimated by the VRAP system can be up to ±1 m

(Zamora and Moreno-Amich 2002; Barnett et al. 2010). The

deployment of moored transmitters showed a similar level of

precision of ±1 m in the middle of our VRAP array, with

the precision decreasing outside the triangle formed by the

VRAP buoys similarly to Klimley et al. (2001a).

The VRAP system was deployed at North Neptune

Islands between late November 2009 and October 2011 for

a total of 454 days. The VRAP system was deployed

during three monitoring periods ranging from 96 to

188 days (23/11/2009–11/05/2010, 26/06/2010–30/12/

2010, and 5/07/2011–8/10/2011) (Fig. 2). The three

deployments were necessary to gather a large enough

sample size due to the lack of white sharks around the

Neptune Islands during the first deployment and techno-

logical difficulties with the VRAP system during the sec-

ond and third deployments, including hydrophones that

failed within 3 days of deployment. Technological diffi-

culties with the VRAP system also led to inaccurate esti-

mates of residency due to the date of last detection not

necessarily equating to the end of a shark’s residency

period. Throughout the duration of the study, the VRAP

system was operational and transmitters were deployed and

active, for a total of 221 days (Fig. 2). Due to tagged

sharks leaving the study site prior to the transmitter battery

running out, the total number of monitored days between

tagging and last detection was 44 days. SCDO were pres-

ent during 28 (64 %) of these days with 16 days (36 %)

being operator-free days.

Tagging

Twenty-one white sharks were tagged with V16P-5H

acoustic transmitters (VEMCO Ltd., Halifax, Canada)

between 14 December 2009 and 11 September 2011. Tags

were opportunistically deployed throughout the monitoring

period depending on the number of sharks reported at the

study site by the SCDO. Transmitters recorded depths of

tagged sharks via a calibrated pressure sensor (accu-

racy ± 3.4 m). Transmitters were programmed to transmit

every *1 s and had a predicted battery life of *50 days.

Transmitters were tethered to an umbrella dart-tag head

using a 10- to 15-cm-long stainless wire trace (1.6 mm

diameter). Transmitters were implanted in the dorsal

musculature of sharks using a tagging pole when sharks

were attracted close to the SCDO.

Data analysis

Data visualisation and analysis was carried out using

Eonfusion version 2.2 and 2.3 (Myriax, Hobart, Australia),

IBM SPSS Statistics version 19 (IBM Corporation, New

York, USA), and R statistical software version 2.15.0 (R

Fig. 2 Summary of deployment periods, shark detections, and

presence of cage-diving operators (SCDO) throughout the study.

Filled circles indicate days when sharks were detected; the first data

point represents the date of tagging. Triangles represent sharks which

were tagged outside the Vemco radio-acoustic positioning (VRAP)

array (i.e. berleying sites on the north side of the Islands, see Fig. 1),

but which were never detected by the VRAP system. Empty circles

represent the expected date that transmitter battery would have run

out. Crosses indicate days when SCDO were anchored within the

VRAP array. The less frequent presence of SCDO during the summer

months was not necessarily due to SCDO being absent, but was partly

related to SCDO being anchored outside of the VRAP array and using

the berleying site north of the Neptune Islands due to prevailing

southerly wind often occurring in Summer. Each deployment period

is shaded in grey. Areas shaded in red represent periods during which

the VRAP system was not operational
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Development Core Team, 2011). The time difference,

distance, and rate of movement between two consecutive

location estimates were calculated using the Eonfusion

add-in operator ‘Velocity and Acceleration’.

Although the transmitters could be detected further than

500 m from the edges of the triangle formed by the VRAP

receivers (hereafter referred to as the VRAP array), the

precision of the location estimates is greatly reduced at

such distance from the VRAP buoys ([10–20 m, Klimley

et al. 2001a). To ensure that the analysis was performed on

precise location estimates and to filter erroneous data

points, the following filters were applied:

• Position estimates that were on land or outside the

VRAP array were removed;

• Six days were removed from the analysis due to faulty

hydrophones on the VRAP buoys and to the presence

and/or location of SCDO not being recorded by the

operators.

• Consecutive location estimates with time differences

greater than 5 min were removed. This threshold

allowed the shore station to go through two full cycles,

while reducing the risk of underestimating the rate of

movement from sharks leaving and re-entering the

VRAP array.

• Consecutive location estimates with distances larger

than 200 m were removed. Such distances would have

likely resulted from location estimates at the edge of or

outside the VRAP array, where precision was less

reliable.

• Rates of movement more than 10 m s-1 were excluded

due to the physical limits on swimming speed of lunate

tail propelled aquatic animals, such as white sharks

(Iosilevskii and Weihs 2008).

Location estimates were categorised by the presence or

absence of SCDO. For each ‘SCDO-present’ location

estimate, the distance between the white shark and each

SCDO was calculated. Based on these calculations, loca-

tion estimates were binned into one of the following

groupings: 0–29.9, 30–59.9, 60–89.9, 90–119.9, and

[120 m. These bins were also used to categorise the level

of interaction between white sharks and SCDO as: close

(\30 m), medium (30–120 m), and distant ([120 m)

interactions.

Effect of cage-dive operations on horizontal distribution

and time spent in the area

The horizontal distribution and amount of time white

sharks were detected between berleying and non-berleying

periods was investigated using several metrics:

1. The spatial distributions of the sharks between berley-

ing and non-berleying periods were compared using

‘time-spent-in-area’ analysis within a 10 9 10 m grid

of the study site. Locations were interpolated, based on

equal time spacing between records and binned to a

grid of cells with the time spacing of 1,000 s. The cells

with the highest relative proportion of time spent and

accounting for 50 % of total amount of time spent in

the area were then plotted in relation to the position of

the SCDO and compared for non-berleying and

berleying periods. Time spent in area was calculated

using the make GridTopology and tripGrid.interp tools

in the Trip R package.

2. The relative amount of time sharks were present during

berleying was expressed as a ratio between the

proportion of time within the VRAP array when

SCDO were present and absent. The likelihood of

white sharks spending more time within the VRAP

array when SCDO were present was tested by com-

paring the relative amount of time present against 0.5,

which represents equal time spent in the VRAP array

regardless of SCDO presence. Only time periods

between 08:00 and 19:00 were included to avoid

biases introduced by potential diel differences (i.e. low

rate of detections at night).

3. During berleying, the proportion of time spent

within each distance bin of the SCDO was also

calculated.

4. Time spent within these distances was then standard-

ised for all sharks to take into account the different

surface areas of the various ranges. For example, the

circular area within 30 m of an SCDO was ca.

2,800 m2, while the area more than 120 m away from

SCDO, but within the VRAP array covered ca.

350,000 m2. The difference in time spent within each

distance bin was assessed using a generalised additive

mixed model (GAMM) to account for the lack of

independence in the behaviour of each shark and

because the relationships between the dependent and

independent variables were not linear. Individual

sharks were included in the model as the ‘random

effect’ and the distances from the boat as the ‘fixed

effect’. The most appropriate statistical family, error

distribution, and validity of the model were determined

through an examination of the distribution of the

response variable, a visual inspection of the residuals

for the saturated models, and an ANOVA test between

the fitted and residual values of the model. Modelling

was undertaken using the ‘gamm’ function and

restricted maximum likelihood approach of the ‘mgcv’

R package.
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Effect of cage-dive operations on swimming depth and rate

of movement

The time interval between consecutive detections and

three-dimensional distance between the estimated locations

(taking into account vertical distance, i.e., depth, as well as

horizontal distance) were used to calculate the rate of

movement (ROM) between each consecutive location. The

depth and the calculated ROM were compared between

berleying and non-berleying periods using a GAMM with

individual shark as the ‘random effect’ and the presence/

absence of SCDO as the ‘fixed effect’. Since the swimming

behaviour of white sharks might only be impacted by

SCDO when within a certain distance from the vessels, a

similar analysis was undertaken comparing the depth and

ROM when sharks were within each distance bin. Model

validity was assessed similarly to the GAMM carried out

on the time spent in area. The assumption that SCDO bring

sharks close to the surface near SCDO was tested by

comparing the proportion of depth records within 5 m of

the surface when sharks were within 30 m and when fur-

ther than 30 m of SCDO, or when SCDO were absent,

using the minlike two-sided Poisson exact test from the

exactci R package (R statistical software, version 2.13.1)

(R Development Core Team 2011) (Fay 2010). The min-

like two-sided method was chosen because it is generally

more powerful than the central two-sided method (Fay

2010).

Temporal correlations

Temporal correlations were assessed to test whether the

effects of SCDO were influenced by the number of days

exposed to berleying. The total amount of time sharks

spent in the VRAP array, the time spent in the array

during berleying periods, and the time spent within 30 m

of the SCDO were tested for correlation with the day

number since tagging. These correlations were tested by

estimating the Pearson’s r and the significance of the

correlation.

Table 1 Summary of tagged sharks and detections obtained before and after data filters

Shark Total length

(m)

Sex Date tagged Date of last

detection

Days detected Location

estimate

Filtered

location

% filtered

1 3.6 Male 14/12/2009 15/12/2009 2 413 187 55 %

2a 3.5 Male 18/01/2010 18/01/2010 0 0 0 –

3 3.3 Female 26/06/2010 27/06/2010 2 641 282 56 %

4b 3.0 Female 27/06/2010 29/06/2010 3 418 0 100 %

5b 4.5 Female 27/06/2010 29/06/2010 3 182 0 100 %

6c 2.5 Female 17/08/2010 17/08/2010 1 5 0 100 %

7c 4.2 Female 17/08/2010 17/08/2010 1 2 0 100 %

8c 4.0 Male 4/10/2010 4/10/2010 1 7 0 100 %

9 4.0 Male 14/10/2010 1/11/2010 12 3830 1842 52 %

10 3.5 Male 22/10/2010 2/11/2010 5 2714 1427 47 %

11c 3.8 Male 22/10/2010 22/10/2010 1 11 6 45 %

12a 4.2 Male 12/12/2010 12/12/2010 0 0 0 –

13 4.5 Female 5/07/2011 7/07/2011 3 1466 755 49 %

14 2.9 Male 5/07/2011 7/07/2011 3 576 286 51 %

15a 4.0 Male 6/07/2011 6/07/2011 0 0 0 –

16 3.6 Male 6/07/2011 7/07/2011 2 1263 469 62 %

17 3.8 Female 6/07/2011 7/07/2011 2 771 373 51 %

18 2.8 Male 6/07/2011 7/07/2011 2 1339 720 46 %

19 3.5 Female 11/09/2011 30/09/2011 4 798 413 49 %

20 4.0 Male 11/09/2011 26/09/2011 9 1777 885 50 %

21 4.2 Male 11/09/2011 28/09/2011 17 6116 3034 51 %

Total 73 22329 10679 52 %

Total length was estimated using the length of the marlin board as a reference; location estimate is the number of location estimates recorded by

the VRAP system prior to any filters; filtered location is the number of location estimates remaining after filters; and % filtered is the percentage

of location estimates removed by filters
a sharks not detected by VRAP array
b sharks removed from further analysis due to location estimates obtained on days with faulty hydrophones
c sharks removed from further analysis due to small number of location estimates following data filters
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For all statistical analyses, P \ 0.05 was considered

statistically significant. Values provided in the results are

mean ± standard error.

Results

A total of 21 white sharks were tagged during the study.

Two, ten, and nine sharks were tagged and monitored

during the first, second, and third deployment periods,

respectively. Detection periods (date of first detection to

date of last detection) varied between sharks and ranged

from 1 to 19 days (mean 5.4 ± 1.5 days; Table 1).

Sharks were detected on 36 of the 221 days monitored.

At least one SCDO was present on 25 (69 %) of these days.

As multiple tagged sharks could be present within the array

at any time, ‘shark-days’ were defined as any day that a

specific shark was detected. For example, two sharks

detected on the same day represent two ‘shark-days’ in the

analyses. A total of 64 shark-days was recorded, of which

45 (70 %) were concurrent with shark cage-diving opera-

tions. Six of these days were discarded because cage-diving

took place outside the VRAP array.

Tagged sharks did not approach within 30 m of an

operator on eight of the remaining 39 berleying days

(21 %). This suggested that sharks did not always closely

interact with SCDO when present during berleying

operations.

Effect of cage-dive operations on horizontal

distribution and time spent in the area

The horizontal distribution of sharks was affected by

SCDO, with the area in which they spent 50 % of their

time decreasing from 36,200 to 26,200 m2, a reduction of

28 % (Fig. 3). The area where sharks spent 50 % of their

time during berleying periods also coincided with the

anchoring locations of SCDO (Fig. 3).

The relative amount of time in the array during berleying

was highly variable and ranged from 0 to 1 (SE = 0.078);

for instance, one shark was only detected when SCDO were

absent, while another one was only detected during ber-

leying operations. Four sharks were in the array more than

twice as long when SCDO were present compared to when

SCDO were absent (i.e. relative amount of time[0.7). The

average relative amount of time spent within the array

during berleying was not significantly different to 0.5 (0.56,

t test: t10 = 1.70; P = 0.12), indicating that the average

amount of time in the array was similar regardless of SCDO

being present or absent (Fig. 4).

On average, sharks spent 48 ± 5.5 % of the time within

60 m of the SCDO. While most sharks spent a large

amount of time within 60 m of SCDO, there was signifi-

cant variation between individuals. For instance, shark 13

spent *70 % of the time within 60 m of SCDO, compared

to only 5 % for shark 10 (Fig. 5). Standardising for the

different surface areas of the various range bins, sharks

spent more than 65 % of the time that they were detected

within 30 m of an operator. Following results from the

GAMM showing that the time spent in each distance bin

Fig. 3 Time spent in area by white sharks during non-berleying (top

figures) and berleying (bottom figures) periods. Blue represents total

time spent within the array, while red represents 50 % of time spent

within the array. Black circles represent shark cage-diving operators’

locations throughout the monitoring period
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was significantly different (GAMM: F = 274.1, P \ 0.001),

pairwise comparison showed that sharks spent more time

within 0–29.9 and 30–59.9 m from SCDO than within

60–89.9 m or more than 90 m from SCDO (Fig. 6).

Effect of cage-dive operations on swimming depth

and rate of movement

The mean swimming depth was significantly shallower

when SCDO were present than when no berleying was

taking place (GAMM: t = -3.16; P = 0.002). The swim-

ming depth of white sharks was also significantly different

according to the distance from the SCDO, with a mean

depth of 14 m within 30 m increasing to 20 m when

greater than 120 m from SCDO (Fig. 7, GAMM: F = 120;

P \ 0.001). When sharks were within 30 m of SCDO,

21 % of the depth records were within the top 5 m, which

was significantly more than when sharks were further away

from the operators, or when SCDO were absent (13 and

10 %, respectively; Poisson exact test: P \ 0.001). Histo-

grams of swimming depths also confirmed that the

observed difference was due to sharks in proximity to

SCDO spending more time within the top of the water

column rather than due to increasing maximum depths

away from the operators (Fig. S1).

The mean ROM of white sharks was not significantly

different whether SCDO were present (2.64 m s-1) or

absent (2.81 m s-1; GAMM: t = 0.10; P = 0.921). The

ROM of white sharks was, however, significantly different

according to the distance from the SCDO (GAMM:

F = 11.16; P \ 0.001). The ROM when sharks were

within 30 m of SCDO (2.4–2.5 m s-1) was significantly

slower compared to when sharks were more than 120 m

away from SCDO (3.0 m s-1) (Fig. 7). Histograms of the

ROM showed that the decreasing ROM with proximity to

SCDO was due to the increasing proportion of slow ROM

recorded (0–0.4 m s-1) (Fig. S2).
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Temporal correlations

When combining all sharks, a significant negative corre-

lation was apparent between the day number since tagging

and the amount of time white sharks were present in the

VRAP array, and during berleying. When analysing these

correlations for the three individual sharks which were

monitored the longest, none of the correlations tested were

significant (Fig. 8; Table 2).

Discussion

This study improves our understanding of the complex

relationship between wildlife tourism and its effects on

sharks, and assesses how tourism affects shark behaviour at

a finer spatial scale than previously investigated. The study

shows that the space utilisation of white sharks changed

when cage-diving vessels were present and depending on

the proximity to the SCDO. This is expected, as the use of

berley and tethered bait is aimed at temporarily modifying

the behaviour of sharks to satisfy the viewing expectation

of tourists during the cage-diving experience. The changes

were, however, not all consistent, with the level of inter-

action with SCDO and behavioural responses varying

between individual sharks.

The reduction in the area within which white sharks

spent 50 % of their time and shallower swimming depth

when SCDO were present indicates that SCDO not only

affect residency and timing of visitation (Bruce and

Bradford 2013), but also the fine-scale spatial distribution

of white sharks. The concentrated swimming depth in the

surface layer and slower ROM when in proximity to

operators further indicate that these effects are not only

influenced by the presence of SCDO, but also by the dis-

tance to the SCDO. The cage-diving industry is concen-

trating the three-dimensional spatial distribution of white

sharks into a small area around the berley source and at the

surface where the tethered bait is located. Such changes

could alter the activity patterns, metabolic requirements,

and energy budget of white sharks, as proposed for other

species of sharks (Fitzpatrick et al. 2011).

Other factors investigated in our study could also affect

the energy budget of white sharks at the Neptune Islands.

For example, sharks spent a significant amount of time

within the VRAP array, which was deployed close to the

highest concentration of pinnipeds of the Island group

(Shaughnessy and McKeown 2002). This is consistent with

white sharks visiting these islands to feed on pinnipeds

(Semmens et al. 2013) and is similar to observations from

various other white shark aggregations (Le Boeuf 2004;

Laroche et al. 2008; Domeier et al. 2012). Sharks, however,

also spent a significantly greater amount of time in close

proximity to the SCDO (up to 60 % of their time within

60 m of the vessels) than expected by chance. Based on the

estimates of metabolic rates derived from swimming speed,

white sharks at the Neptune Islands are predicted to
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Fig. 8 Scatterplot of the a total detection time when sharks were

present at North Neptune Island group; b detection time during

berleying periods; and c detection time when sharks were present

within 30 m of shark cage-diving operators, against detection day

number or berleying day number since tagging. Filled circles

represent shark monitored for 4 days or less. Sharks which were

monitored for longer than 4 days are represented as different symbols.

Note data from the tagging day were removed to account for biases

associated with time of tagging and tagging effect

Table 2 Summary of Pearson’s r between all sharks combined and

individual sharks which were detected more than four days between

the total amount of time sharks spent in the VRAP array, spent in the

array during berleying periods, and within 30 m of a shark cage-

diving operator against the day number since tagging

Sharks Total time During berleying Within 30 m

All sharks 20.412 (0.005) 20.370 (0.05) -0.358 (0.06)

Shark 21 -0.418 (0.11) -0.373 (0.32) -0.165 (0.61)

Shark 9 0.046 (0.90) 0.004 (0.99) 0.086 (0.91)

Shark 20 0.055 (0.91) 0.089 (0.89) 0.112 (0.86)

Numbers in brackets represent P value; numbers in bold represent

significant correlations (P \ 0.05)
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consume 0.3 weaned New Zealand fur seal pups per day,

several times higher than previously proposed (Semmens

et al. 2013). A reduction in foraging time as a result of

wildlife tourism has previously been documented in ter-

restrial (e.g. Roes et al. 1997; Lott and McCoy 1995;

Duchesne et al. 2000), avian (e.g. Steven et al. 2011;

Buckley 2004), and marine (e.g. Williams et al. 2006;

Lusseau et al. 2009; Christiansen et al. 2010) species and

has been shown to affect individual fitness and population

viability (e.g. Kerbiriou et al. 2009). The distraction pre-

sented by the cage-diving industry could decrease the

amount of time white sharks spend foraging and result in

reduced foraging success (Bruce and Bradford 2013),

hence reducing their fitness, at the individual and popula-

tion levels.

Changes in the activity levels of white sharks, as

observed in the variation of rate of movement (ROM) when

in proximity to SCDO, might also have implications for

their energy budget. The decreased ROM observed when

sharks were in close proximity to the boats may be

explained by the increased tortuosity of the tracks and rapid

turnarounds when interacting with the tethered bait. The

energy requirement to undertake those directional changes

could be higher than the routine energy expenditure of

28.2 MJ when patrolling the Neptune Islands at regular

swimming speed (Semmens et al. 2013). Increased energy

expenditure as a result of human disturbance has been

shown to behaviourally and physiologically impact a range

of taxa (Knight and Cole 1995; Culik 1994; Giese et al.

1999). The combination of the potential increased energy

requirements, due to interactions with tethered baits, and

reduced energy intake, due to disrupted natural foraging

behaviour, could unbalance the energy budget and has

long-term effects on life history traits, such as growth and

reproduction (Calow 1979). However, the tethered bait can

sometimes be consumed by sharks regardless of the

attempts by the SCDO to prevent feeding, and the energy

gained from the baits might compensate for the additional

activity and disrupted natural foraging incurred by inter-

acting with SCDO. While no data are currently available

on the number of baits consumed by individual sharks, or

the effects of interacting with SCDO on the energy budget

of white sharks, a recent study has estimated the field

routine metabolic rate (RMR) at 723 mg O2 kg-1 (Sem-

mens et al. 2013). The potential impacts on individual fit-

ness and population viability highlight the need to compare

the energy expenditure of sharks closely interacting with

SCDO to this baseline RMR, and to quantify energy intake

from tethered baits.

The ROM obtained in this study (2.7 m s-1) is rela-

tively high compared to previous studies, which range from

0.8 to 1.5 m s-1 (Klimley et al. 2001a; Bruce et al. 2006;

Bruce and Bradford 2012, 2013; Strong et al. 1992; Bonfil

et al. 2005; Carey et al. 1982; Strong et al. 1996; Klimley

et al. 2002). Most previous estimates of ROM were cal-

culated using positions from conventional acoustic tracking

or satellite telemetry and have a propensity to underesti-

mate swimming speed due to errors involved in estimating

true position and the two-dimensional point-to-point cal-

culations of distance travelled. The present study suggests

that white sharks might be capable of sustained swimming

speed higher than previously estimated. Considering that

most previous estimates of swimming speed were based on

sharks travelling, white shark patrolling seal colonies might

also swim on average faster than travelling sharks.

Our study provides evidence that sharks detected within

the berleying site vary in their propensity to approach

SCDO. This highlights that the presence of sharks on days

during which operators are present does not necessarily

imply that sharks will come within close proximity of

SCDO, or that the presence of the SCDO will lead to direct

physiological impacts on all individuals. Situations when

sharks do not come in close proximity to SCDO have

previously been linked to habituation to berleying exposure

(Laroche et al. 2007). Although some evidence suggesting

a habituation response was observed when data from all

sharks during this study were combined, our ability to

further quantify whether habituation occurred was limited

as only three sharks were monitored for more than 8 days.

Differences in individual shark’s response to SCDO

were also observed in the proportion of detections obtained

when SCDO were present, in the proportional amount of

time spent in close proximity to the SCDO, swimming

depth, rate of movement, and correlations with number of

days exposed to berleying. For example, some sharks spent

more than 60 % of their time within 60 m of the SCDO,

while others were mostly detected further than 120 m from

the SCDO. These differences are likely to result in the

impact from SCDO interactions varying between individ-

uals. This suggests that care should be taken when gener-

alising across individuals and that the findings from a few

individuals might not be applicable to all sharks visiting the

Neptune Islands. Such individual variability has previously

been seen in Caribbean reef sharks (Carcharhinus perezi)

and sicklefin lemon sharks (Negaprion acutidens), where

different sharks show opposite residency trends and

responses to the tourism industry and associated provi-

sioning (Clua et al. 2010; Maljković and Côté 2011; Bru-

nnschweiler and Barnett 2013). While sex and size of

tagged sharks were recorded, the uneven and relatively

small sample size precluded any analysis of sex- or size-

related differences. The reasons for the different behav-

iours observed are potentially numerous and are likely a

combination of motivation, different natural feeding his-

tories, dominance hierarchies, individual experiences,

previous exposure to berley or number of tethered baits
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consumed, environmental conditions, or behavioural syn-

drome (consistency of responses across situations).

Although the existence of behavioural syndrome has not

yet been recorded in elasmobranchs, evidence has been

shown in many other species across a range of taxa

(Koolhaas et al. 1999; Gosling 2001; Sih et al. 2004). The

integration of behavioural syndrome, or at least the rec-

ognition of individual variability, is recommended in

studies of the impact of human disturbance on wildlife

(Martin and Réale 2008), and is unambiguously needed to

better understand the potential effect of cage-diving on

white sharks. The degree of variation between individual

sharks and the diverse levels of interactions highlights the

complexity of the relationships between wildlife tourism

and shark behaviour. The present study suggests that, to

improve our understanding of these relationships, future

monitoring of wildlife tourism may require further infor-

mation on both proximity to SCDO and shark presence.

Conclusion

The present study provides quantitative information about

the effects of SCDO on the fine-scale swimming behaviour

of white sharks and describes significant changes in their

short-term spatial distribution and ROM during shark cage-

diving operations. Whether these changes will affect pop-

ulation viability of white sharks visiting the Neptune

Islands is unknown and was outside the scope of this study.

The study, however, also highlighted the need to recognise

individual variability in the propensity of sharks to interact

with SCDO and emphasised the need to take it into account

in future studies and management of the industry. Visita-

tion at the cage-diving site is temporary (Bruce et al. 2005;

Bruce and Bradford 2013) and white sharks vary in their

level of interactions with SCDO. As such, the effects of the

cage-diving industry are unlikely to be uniform and would

be limited to periods when white sharks visit the Neptune

Islands. The observed effects could, however, lead to

physiological impacts and potentially decrease individual

or population fitness, and should be further investigated.
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