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Abstract. A multifractal method of analysis, initially developed in the framework of turbulence and
having had developments and applications in various geophysical domains (meteorology, hydrology,
climate, remote sensing, environmental monitoring, seismicity, volcanology), has previously been
demonstrated to be an efficient tool to analyse the intermittent fluctuations of physical or biological
oceanographic data (Seuront et al., Geophys. Res. Lett., 23, 3591–3594, 1996 and Nonlin. Processes
Geophys., 3, 236–246, 1996). Thus, the aim of this paper is, first, to present the conceptual bases of
multifractals and more precisely a stochastic multifractal framework which among different advantages
lead in a rather straightforward manner to universal multifractals. We emphasize that contrary to basic
analysis techniques such as power spectral analysis, universal multifractals allow the description of the
whole statistics of a given field with only three basic parameters. Second, we provide a comprehensive
detailed description of the analysis techniques applied in such a framework to marine ecologists and
oceanographers; and third, we illustrate their applicability to an original time series of biological and
related physical parameters. Our illustrative analyses were based on a 48 h high-frequency time series
of in vivo fluorescence (i.e. estimate of phytoplankton biomass), simultaneously recorded with temper-
ature and salinity in the tidally mixed coastal waters of the Eastern English Channel. Phytoplankton
biomass, which surprisingly exhibits three distinct scaling regimes (i.e. a physical–biological–physical
transition), was demonstrated to exhibit a very specific heterogeneous distribution, in the framework
of universal multifractals, over smaller (<10 m) and larger (>500 m) scales dominated by different
turbulent processes as over intermediate scales (10–500 m) obviously dominated by biological
processes.

Introduction

Marine systems, globally dominated by turbulent events in coastal as in offshore
locations (Grant et al., 1962; Oakey and Elliott, 1982; Mitchell et al., 1985), exhibit
an intimate relationship between the structure of phytoplankton populations and
their physical environment (Steele, 1974, 1976, 1978; Denman and Powell, 1984;
Legendre and Demers, 1984). This association of physical and biological processes
occurs over a whole range of scales, as shown by the patterns of physical, chemi-
cal and biotic parameters which are strongly interrelated within a given time
period or spatial region (Cassie, 1959a,b, 1960). Even if for many decades many
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investigators have shown that planktonic organisms are neither uniformly nor
randomly distributed in the ocean (Hardy and Gunther, 1935; Cassie, 1963), these
results are essentially related to spatial patterns associated with large- and coarse-
scale physical processes (Mackas et al., 1985). On the contrary, on fine and micro
scales, which are of main interest for biological processes such as phytoplankton
or zooplankton dynamics (Estrada et al., 1987; Alcaraz et al., 1988; Rothschild and
Osborn, 1988; Sundby and Fossum, 1990; Thomas and Gibson, 1990; Granata and
Dickey, 1991; Peters and Gross, 1994), very little is known about the effects of
turbulent processes, basically regarded as a great factor of homogenization.

More specifically, physical processes, regarded as a main factor in structuring
biological communities (Legendre and Demers, 1984; Mackas et al., 1985; Daly
and Smith, 1993), are intimately linked with the capability of organisms to aggre-
gate (i.e. to create patches), at least in the case of phytoplankton communities.
Plankton patchiness (variability at horizontal scales between 10 m and 100 km, and
at vertical scales between 0.1 and 50 m; Mackas et al., 1985) is then determined by
the quasi-equilibrium which exists (or not) between biotic processes such as phyto-
plankton growth and hydrodynamism—basically estimated by the rate of kinetic
energy «—which was shown to be determinant in the size of patches which can
maintain themselves in the face of diffusion (Skellam, 1951; Kierstead and Slobod-
kin, 1953; Denman and Platt, 1976; Wroblewski and O’Brien, 1976; Denman et al.,
1977; Okubo, 1978, 1980; Powell and Okubo, 1994) (e.g. the KISS length as defined
by Okubo, 1980). Moreover, in addition to these theoretical investigations, the
interactions between phytoplankton community dynamics and turbulent
processes have been widely studied by numerous investigators (Platt et al., 1970;
Platt, 1972; Powell et al., 1975; Denman, 1976; Fasham and Pugh, 1976; Steele and
Henderson, 1977, 1992; Fortier et al., 1978; Horwood, 1978; Lekan and Wilson,
1978; Demers et al., 1979; Wiegand and Pond, 1979).

These pioneering approaches were essentially based on the assumption that
turbulent processes can be regarded as homogeneous processes (Kolmogorov,
1941; Obukhov, 1941, 1949; Corrsin, 1951). However, it has been shown that not
only turbulent fluid motions and the fluctuations of purely passive scalars such as
temperature generate sharp fluctuations at all scales, but the distribution of these
fluctuations, i.e. the activity of turbulence, is far from being homogeneous and
rather extremely intermittent (Batchelor and Townsend, 1949; Kolmogorov, 1962;
Obukhov, 1962). Thus, recent analysis conducted on zooplankton data (Pascual et
al., 1995), temperature and in vivo fluorescence (Seuront et al., 1996a,b; Seuront,
1997) have shown that oceanic scalar fields were heterogeneously distributed over
scales dominated by physical (i.e. turbulent) or biological processes.

Earlier statistical analysis techniques of plankton patchiness, such as models of
point processes or power spectral analysis [see Fasham (1978) for a review] char-
acterize variability in a very limited way. For instance, power spectral analysis,
widely used in ecological applications (Platt and Denman, 1975), being only a
second-order statistic, characterizes the variability very poorly by implicitly assum-
ing ‘quasi-Gaussian’ statistics, which are not relevant for intermittent fields. For
such fields, the best tool is provided by multifractal analysis, as shown by Pascual
et al. (1995), Seuront et al. (1996a) and Seuront (1997) for planktonic fields.
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Multifractals can be regarded as a rather considerable generalization of fractal
geometry, essentially developed for the description of geometrical patterns
(Mandelbrot, 1983). Indeed, fractal geometry has been introduced to describe the
relationship—known as a scaling relationship—between patterns and the scale of
measurement: the ‘size’ of a fractal set varies as the scale at which it is examined
and raised to a (scaling) exponent, in this case given by the fractal dimension. The
transition to the concept of multifractal fields (Grassberger, 1983; Hentschel and
Procaccia, 1983; Schertzer and Lovejoy, 1983, 1985, 1987a; Lovejoy and
Schertzer, 1985; Parisi and Frisch, 1985; Meneveau and Sreenivasan, 1987) leads
to the consideration of multifractal fields as an infinite hierarchy of sets (loosely
speaking, each of them corresponds to the fraction of the space where data exceed
a given threshold) each with its own fractal dimension. Thus, multifractal fields
are described by scaling relationships that require a family (even an infinity) of
different exponents (or dimensions), rather than the single exponent of fractal
patterns. Despite the apparent complexity induced by a multifractal framework,
using the universal multifractal formalism (Schertzer and Lovejoy, 1987b, 1989),
the distribution of a given scalar field can be wholly described by only three
indices, which resume the statistical behaviour of turbulent fields from larger to
smaller scales, as well as from extreme to mean behaviours.

Previous empirical and theoretical studies of phytoplankton patchiness (e.g.
Platt, 1972; Denman and Platt, 1976; Denman et al., 1977) have been able to quan-
tify the scale of variation present in transects of chlorophyll, salinity and tempera-
ture, but have been able to say little about the precise variability associated with
those scales. Herein, the goal of this paper is to provide to marine ecologists and
oceanographers a detailed account of the universal multifractal techniques previ-
ously used for the description of phytoplankton biomass and temperature fluctu-
ations (Seuront et al., 1996a,b; Seuront, 1997) and their application to time series
of in vivo fluorescence (i.e. phytoplankton biomass) and related physical
parameters (i.e. temperature and salinity), taken from a fixed mooring in tidally
mixed coastal waters of the Eastern English Channel. In that way, we provide an
illustration of the applicability of these techniques in the characterization of the
whole variability associated with specific scaling regimes identified with power
spectral analysis: on small scales, where phytoplankton biomass distribution is
controlled by turbulent processes, and at broader scales, where the variability in
the biological and physical parameters such as cell growth and community struc-
ture, and horizontal processes, respectively, has an important role in shaping the
phytoplankton distribution and overrides the local effects of turbulent mixing.

Background theoretical concepts in turbulence

Describing turbulent processes

Developed from ‘intuitive’ ideas (Richardson, 1922), a classical picture of turbu-
lence treats it as a field of nested eddies of decreasing sizes, where turbulent
kinetic energy ‘cascades’ with negligible dissipation from the largest energy-
containing eddies to smaller and smaller eddies until it reaches Kolmogorov’s
length scale (i.e. viscous scale), where viscosity effects cannot be neglected and
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start to smooth out turbulent fluctuations. Under the associated hypothesis of
local isotropy and tri-dimensional homogeneity of turbulence, the velocity fluc-
tuations of a given eddy can be described by the scaling relationships
(Kolmogorov, 1941; Obukhov, 1949):

DVt < «1/3l1/3 (1)

DTl < w1/3l1/3 (2)

where DVt = )V(x + l) – V(x)) and DTl = )T(x + l) – T(x)) are the velocity and
temperature shears at scale l, « is the dissipation rate of turbulent kinetic energy
and w is the resulting flux of non-linear interactions of velocity and temperature
fields given by w = «–1/2x3/2, where x is the rate of temperature variance flux.

In Fourier space, the 1/3 law of velocity and temperature fluctuations in phys-
ical space [equations (1) and (2)] is associated with a power law for energy and
variance power spectra (Figure 1) according to Obukhov (1941, 1949) and
Corrsin (1951):

EV(k) < «2/3k–5/3 (3)

ET(k) < w2/3k–5/3 (4)

where k is a wavenumber.
However, contrary to the original proposal (Kolmogorov, 1941; Obukhov,

1941), it has been shown (Batchelor and Townsend, 1949; Kolmogorov, 1962;
Obukhov, 1962) that the rate of energy flux « and the rate of variance flux x—
respectively associated with velocity and temperature fluctuations—exhibit at all
scales sharp fluctuations called intermittency (Figure 2). Turbulent velocity and
temperature fluxes are intermittent in the sense that active regions occupy tiny
fractions of the space available. Assumption of homogeneity is then untenable
and turbulent fields have to be regarded as inhomogeneous and scale-dependent
processes. Assuming the validity of the ‘refined similarity hypothesis’ (Kolmo-
gorov, 1962; Obukhov, 1962), this leads to the introduction of the subscript l and
to the modification of the relationships (1) and (2), respectively, as DVt < «l

1/3l1/3

and DTl < wl
1/3l1/3.

Modelling intermittent turbulence: from fractals to multifractals

Intermittent turbulence, fractal theory and multiplicative processes. Basically, the
concept of eddies hierarchically organized in an isotropic cascade from large to
small scales can be ‘naturally’ related to fractal properties in respect to the link
existing between fractals and self-similarity (e.g. an object is called self-similar,
or scale-invariant, if it can be written as a union of rescaled copies of itself, with
the rescaling isotropic or uniform in all direction). However, the phenomenology
of turbulent cascades is rather more complex than the expression ‘eddy’ would
lead us to understand, since it becomes necessary to describe how the activity of
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turbulence becomes more and more inhomogeneous at smaller and smaller
scales. The simplest cascade model, the ‘b-model’ (Novikov and Stewart, 1964;
Mandelbrot, 1974; Frisch et al., 1978), takes the intermittent nature of turbulence
into account by assuming that eddies are either ‘dead’ (inactive) or ‘alive’
(active). This cascade model has a discrete scale ratio between a parent structure
and a daughter structure is introduced. For simplicity of implementation, this
scale ratio is usually 2: one parent at scale l has 2 children at scale l/2. Using a
notation including scale ratios l = L/l (where L is a fixed outer scale) associated
to the scale l, we may write «2l = m.«l, where m is a multiplicative factor follow-
ing the law:

1
Pr(m = —) = c ‘alive’ sub-eddy (5)

c

Pr(m = 0) = 1 – c ‘dead’ sub-eddy (6)

Multifractal analysis of phytoplankton distribution
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Fig. 1. Schematic representation showing the form of the frequency spectrum of turbulent velocity
cascade, where E(k) is the spectral density (variance units/k)2 and k is a wavenumber (m–1). The
kinetic energy generated by large-scale processes (e.g. wind or tide) cascades through a hierarchy of
eddies of decreasing size to the viscous subrange where it is dissipated into heat. The change in vari-
ance with wavenumber (i.e. slope of power spectrum) is scale invariant with a –5/3 slope as predicted
by the theoretical Kolmogorov–Obukhov power law. The wavenumbers kmax and kmin, respectively,
show the largest scale of creation of turbulence and the smallest scale (i.e. Kolmogorov length scale)
reached by turbulent eddies where turbulent motions are smoothed out by viscous effects.



where c (0 < c < 1) is the parameter of the model expressing the fraction of dead
and alive eddies. This elementary process is then iterated n times until the total
scale ratio l = 2n is reached. If we denote c = 2–c, then we have after n steps (if
we take the first value «1 = 1):
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Fig. 2. Samples of the pattern of the rate of energy flux « (a) estimated from grid generated turbu-
lent velocity fluctuations recorded with a hot wire velocimeter, and the rates of variance fluxes w esti-
mated from in vivo fluorescence (b) and temperature (c) recorded in the Eastern English Channel
with a Sea Tech fluorometer and a Sea-Bird 25 Sealogger CTD, respectively. Turbulent velocity, in
vivo fluorescence and temperature fluxes exhibit at all scales sharp fluctuations called intermittency.



Pr(«l = lc) = l–c ‘alive’ sub-eddy (7)

Pr(«l = 0) = 1 – l–c ‘dead’ sub-eddy (8)

In practice, this means that in an Euclidean space of dimension d, the ‘b-model’
(Figure 3) presents only l–D active sub-eddies, among ld potential sub-eddies
(corresponding to the theoretical case of a homogeneous, or space-filling
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Fig. 3. Elementary isotropic cascades. The left-hand side shows a non-intermittent (i.e. homo-
geneous) cascade process corresponding to the hypothetical case of a space-filling turbulence. The
right-hand side shows how intermittency can be modelled by assuming that not all sub-eddies are
‘alive’, leading to a (mono-) fractal description of turbulence. This is an implementation of the
‘b-model’ (adapted from Schertzer and Lovejoy, 1987b).



turbulence), c and D are, respectively, the fractal codimension and dimension
characterizing the active eddies’ activity, related as:

c = d – D (9)

where d is the dimension of the space considered (d = 1 for time series, d = 2 for
bi-dimensional fields). It is already essential to note (Schertzer and Lovejoy,
1992) that c measures intrinsically the fraction of the space occupied by active
eddies, i.e. its relative sparseness. Equation (9) corresponds merely to the fact
that at each step of the cascade process, the fraction of space filled with alive
eddies decreases by the factor l–c and conversely their energy flux density
increases by the same factor to ensure average conservation.

The discrete ‘b-model’ is, however, only a caricatural approximation since it
involves only dead and alive structures, an eddy is killed within a step of the
cascade. It was indeed expected that the (mono-) fractal nature of this approxi-
mation was inadequate considering the realistic perturbations which correspond
to replace the alternative dead or alive structures by the alternative weak or
strong structures.

Discrete multiplicative cascades and multifractals. Rather than only allowing
eddies to be either ‘dead’ or ‘alive’, the ‘a-model’ (Schertzer and Lovejoy, 1983,
1985) considers a more realistic feature allowing them to be either ‘more active’
or ‘less active’ (Figure 4). Equations (7) and (8) are then modified according to
the following binomial process:

Pr(«l = lg+) = l–c ‘strong’ sub-eddy (10)

Pr(«l = lg–) = 1 – l–c ‘weak’ sub-eddy (11)

where g+ and g– (g– < 0 < g+) are, respectively, the strongest (with associated
codimension c) and weakest singularities of the turbulent field, each singularity
corresponding to an intermittency level. Figure 5 illustrates this mechanism for
one step of the ‘a-model’ cascade. For n steps of the cascade process, the scale
ratio between the largest eddy and the smallest one is then l = 2n and the final
pattern obtained (Figures 6 and 7) is very similar to the one observed in the case
of turbulent field data (cf. Figure 2). With larger and larger number n of steps,
more and more ‘mixed’ singularities g (g– < g < g+) are generated by the two
initial ‘pure’ singularities g+ and g–. One may note here that the ‘b-model’
corresponds to the particular and peculiar case g+ = c and g– = –∞, which explains
why contrary to the general case of the ‘a-model’, the iteration of the elemen-
tary step does not introduce new singularities and therefore yields a ‘black and
white’ outcome.

When n becomes very large, intermittency can then be characterized by the
statistical distribution of singularities g (g– < g < g+):

«l < lg (12)
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and by the associated probability distribution (Schertzer and Lovejoy, 1987b):

Pr(«l ≥ lg) < l–c(g) (13)

where c(g) is a function characterizing the singularities’ distribution. One may
note here that for a multifractal, the value of the field depends on the scale of
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Fig. 4. These isotropic cascade processes show how the right-hand side multifractal ‘a-model’ gener-
alizes the left-hand side monofractal ‘b-model’ by introducing a more realistic feature of intermit-
tency. The ‘a-model’ allows eddies to be ‘more active’ or ‘less active’ rather than allowing them to be
either ‘dead’ or ‘alive’, leading to a multifractal description of turbulence, each intermittency level
being associated with its own fractal dimension.



observation, this is why l is introduced here as a subscript. In practice, experi-
mental data are recorded at the smallest available scale, and are then degraded
through averaging, up to a given scale. As previously shown for c in the case of
the monofractal ‘b-model’, c(g) is a codimension [for more discussion, see
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Fig. 5. Illustration of the ‘a-model’ for one step of cascade. The weak and strong sub-eddies have,
respectively, an associated probability Pr(«l = lg–) = 1 – l–c (l–c < 0) and Pr(«l = lg+) = l–c (l–c > 0),
rather than Pr(«l = 0) = 1 – l–c and Pr(«l = lc) = 1 – l–c expected in the case of inactive and active
sub-eddies of the ‘b-model’.

Fig. 6. A schematic representation of the ‘a-model’ generalizing Figure 5 for five steps of the cascade
process. This shows a function which starts as homogeneous over the entire interval (a), whose scale
of homogeneity is systematically reduced by a successive factor of 4 (b, c, d and e). Such a cascade
model has the property of conserving the area under the curve (i.e. the energy flux to smaller scale),
leading to a more and more sparse distribution of increasingly high peaks. The limit of the function
when the scale of homogeneity goes to zero is dominated by singularities distributed over sparse
fractal sets (redrawn from Schertzer and Lovejoy, 1987b).



Schertzer and Lovejoy (1992)]. Considering that among ld potential sub-eddies
(i.e. in the case of a hypothetical space-filling turbulence) there are l–D(g) sub-
eddies of different intensity, c(g) is expressed as a generalization of equation (9):

c(g) = d – D(g) (14)

where D(g) characterizes the hierarchy of fractal dimensions associated with the
different intermittency levels (i.e. singularities). That leads to consideration that
the support of turbulence is defined by an infinite hierarchy of fractal dimensions
rather than the single dimension of the ‘b-model’. A turbulent process can then
be regarded as a multifractal field, characterized by highly varying fractal dimen-
sions in space and time in accordance with the local intensity of turbulent fluid
motions.

Under fairly general conditions, the properties of the probability distribution
of a random variable are equivalently specified by its statistical moments. The
latter corresponds to the introduction of the scaling moment function K(q) which
describes the multiscaling of the statistical moments of order q of the turbulent
field which writes:

7(«l)q8 < lK(q) (15)

where ‘7.8’ indicates statistical or spatial averaging.
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Fig. 7. A 2D schematic diagram showing a few steps of the discrete multiplicative cascade process of
the ‘a-model’ with two orders of singularity g– and g+ (corresponding to the two values taken by the
independent random increments gg– < 1, and gg+ > 1), leading to the appearance of mixed orders of
singularity g (g– ≤ g ≤ g+) (adapted from Schertzer et al., 1998).



The relationship existing between the two scaling functions c(g) and K(q)
reduces to the Legendre transform (Parisi and Frisch, 1985) for large scale ratios
(i.e. l >> 1):

K(q) = maxg {qg – c(g)} ⇔ c(g) = maxq {qg – K(q)} (16)

Equation (16) implies that there is a one-to-one correspondence (see Figures 8
and 9 for an illustration) between singularities and orders of moments: to any
order q is associated the singularity which maximizes qg – c(g) and is the solution
of c9(gq) = qg. Similarly to any singularity g is associated the order of moment qg

which maximizes qg – K(q) and is the solution of K9(qg) = gq · c(g) and K(q)
exhibits several general properties of multifractals such as convexity and non-
linearity. In particular, for conservative multifractal processes (i.e. <«l> = <«1>,
;l) since K(1) = 0 corresponds via the Legendre transform to the fact that the
corresponding mean singularity of the process, C1 = K9(1) is a fixed point of c(g),
and by consequence the latter is tangential to the first bissectrix line [c(g) = g] in
g1 = c(g) = C1, hence c9(C1) = 1. The determination of the probability distribution
would require the determination of moments at all scales. With the assumption of
scaling, it reduces to the determination of a hierarchy of exponents which remains
nevertheless a priori infinite, and therefore indeterminable, especially for the
highest orders which correspond to the most extreme variability. However, in the
framework of universal multifractals (Schertzer and Lovejoy, 1987b, 1989, 1997;
Lovejoy and Schertzer, 1990), the calculation complexity induced by the hierarchy
previously described is included in few relevant exponents, which determine the
moderate variability as well as the extreme variability.
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Fig. 8. K(q) versus q showing the tangent line K9(qg) = gq. K(q) exhibits several properties of multi-
fractals such as convexity and non-linearity. One may note that the tangent line K9(1) = C1 (not
shown).



Continuous multiplicative cascades and universal multifractals. The discrete
cascade processes discussed up to now to simulate intermittency are quite unreal-
istic because of the fixed scale ratio (usually) used at each step of the cascade. The
continuous multiplicative cascade processes (Schertzer and Lovejoy, 1987b, 1989,
1997), developed as a way to view cascade phenomenology as a continuous
process, are associated with a densification of scales which consist on the one hand
of studying the limit l0 → 1 adding more and more intermediate scales with a fixed
global scale ratio l = l

n
0 and on the other hand the limit l → ∞ (Figure 10).

However, as theoretically demonstrated (Schertzer and Lovejoy, 1987b, 1989,
1997; Lovejoy and Schertzer, 1990; Schertzer et al., 1991), the densification process
converges on universal laws depending only on two fundamental parameters: C1
and a, which describe the multiscaling behaviour of the scaling functions K(q):

C1K(q) = ——– ( qa – q) a ≠ 1
a – 15 (17)

K(q) = C1qln(q) a = 1

and c(g):

g 1 a9

c(g) = C1 1——– + — 2 a ≠ 1
C1a9 a5 (18)

g
c(g) = C1exp 1—— – 12 a = 1

C1

1 1
with — + –— = 1.

a a9
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Fig. 9. c(g) versus g showing the tangent line c9(gq) = qg. As K(q), c(g) exhibits several properties of
multifractals such as convexity and non-linearity. More precisely, c(g) is tangential to the first bissec-
trix line [c(g) = g] in g1 = c(g1) = C1.



C1 is the mean singularity of the process, and also, as already pointed out above
the codimension of the mean singularity, and therefore measures the mean frac-
tality of the process. It satisfies 0 ≤ C1 ≤ d (d is the Euclidean dimension of the
observation space): C1 = 0 for a homogeneous process and C1 = d for a process
so heterogeneous that the fractal dimension of the set contributing to the mean
is zero. It then characterizes a mean inhomogeneity and can be regarded as the
measure of the sparseness of a given field: the higher the C1, the fewer the field
values corresponding to any given singularity (Figure 11a). The index a, called
the Lévy index, is the degree of multifractality bounded between a = 0 and a = 2
which correspond, respectively, to the monofractal ‘b-model’ and to the
log–normal model. It defines how fast the fractality is increasing with higher and
higher singularities: as a decreases, the high values of the field do not dominate
as much as for larger values of a; there are more large deviations from the mean
(Figure 11b).

It can be noticed here that the whole previous developments, conducted in the
framework of turbulence, can be applied to a great variety of intermittent fields.
Indeed, they do not depend on the fact that the governing equations are known
or not: when these equations are known (e.g. in the framework of turbulence),
one uses until now only their scaling symmetry, not the other ones [see Schertzer
et al. (1998) for discussion on new alternatives to bridge this gap between
phenomenology and governing equations]. This is the main reason that the
following class of multifractal models, often called Fractionally Integrated Flux
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Fig. 10. Scheme of the densification of scales process, leading to the viewing of cascade phenomen-
ology as a continuous process. This densification consists both of studying the limit l0 → 1 adding
more and more intermediate scales and the limit l → ∞, where l0 and l are, respectively, the small-
est scale ratio (i.e. the ratio between two successive measurements) and the global scale ratio [i.e. the
ratio between the fixed outer scale L and the smallest scale of measurement l (l = L/l)].
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models (FIF), became used in geophysical fields not related directly to turbu-
lence: in analogy with turbulence, a flux fl, usually associated to some invariance
or conservative property, is defined from a given intermittent scalar field S with
a scaling relationship similar to those relating flux of energy « and velocity shears,
or flux w and temperature gradients [equations (1) and (2)]:

DSl < fl
alH (19)

where H (0 ≤ H ≤ 1) is a parameter which characterizes in a general manner (and
in a very precise manner when a = 1) the degree of non-conservation of the field
(H = 1/3 for a scalar quantity passively advected by non-intermittent turbulence),
whereas the power of the flux is often taken as a = 1 for simplicity (Schertzer and
Lovejoy, 1987b; Teissier et al., 1993a,b). However, the most important meaning
of H corresponds to the fact that it is the order of fractional differentiation in
order to obtain the flux fl from the field S [see Schertzer et al. (1998) for more
discussion (in particular for space–time FIF models) and further details]. Let us
mention briefly that an isotropic fractional differentiation corresponds to a
multiplication by kH in Fourier space equivalent to power law filtering.

Data analysis techniques

Spectral analysis. Basically applied to a variety of geophysical and ecological data
(Platt and Denman, 1975; McHardy and Czerny, 1987; Ladoy et al., 1991; Olsson
et al., 1993) to detect scaling behaviours, spectral analysis corresponds to an
analysis of variance in which the total variance of a given process is partitioned
into contributions arising from processes with different length scales or time
scales in the case of spatially or temporally recorded data, respectively. A power
spectrum separates and measures the amount of variability occurring in different
wavenumber or frequency bands. When all or parts of the spectrum follow a
power law like equations (3) and (4), i.e. E(k) < k–b, the data are scaling in that
range, i.e. the scaling regime. b is the exponent characterizing spectral scale
invariance: for instance b = 5/3 in homogeneous turbulence. The absence of
characteristic time scales and the presence of a scaling regime indicate that a
multifractal analysis may prove to be successful.

Structure functions. A power spectrum being a second-order moment, it rather
characterizes a mean variability, i.e. a mean scaling behaviour. Then, the previous
spectral analysis is generalized with the help of the qth-order structure functions
(Monin and Yaglom, 1975):

7(DSt)
q8 = 7)S(t + t) – S(t))q8 (20)

where for a given time lag t the fluctuations of the scalar S are averaged over all
the available values (‘<.>’ indicates statistical averaging). For scaling processes,
one way (Monin and Yaglom, 1975; Anselmet et al., 1984) to characterize inter-
mittency statistically is based on the study of the scale invariant structure
exponent z(q) defined by:
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t z(q)

7(DSt)
q8 = 7(DST)q81—2 (21)

T

where T is the largest period (external scale) of the scaling regime. The scaling
exponent z(q) is estimated by the slope of the linear trends of 7(DSt)

q8 versus t in
a log–log plot. The first moment, characterizing the scaling of the average abso-
lute fluctuations, corresponds to the scaling ‘Hurst’ exponent H = z(1), previously
introduced in equation (19) to characterize the degree of non-conservation of a
given field. The second moment is linked to the power scaling exponent b by b =
1 + z(2). For simple (monofractal) processes, the scaling exponent of the struc-
ture function z(q) is linear: z(q) = qH [z(q) = q/2 for Brownian motion and z(q)
= q/3 for Obukhov–Corrsin non-intermittent turbulence]. For multifractal
processes, this exponent is non-linear and concave.

Moreover, multifractal processes possessing stable and attractive generators
(Schertzer and Lovejoy, 1987b, 1989; Schertzer et al., 1995), in the universal multi-
fractals framework, the departure from linearity of the scale invariant structure
function exponent z(q) is then given by the universal multifractal parameters a
and C1:

C1z(q) = qH – ——–(qa – q) (22)
a – 1

C1with K(q) = ——– (qa – q) [see equation (17)]. The parameter H is the degree 
a – 1

of non-conservation of the average field [z(1) = H]: H = 0 and H ≠ 0 mean that
the fluctuations are, respectively, scale independent and scale dependent [H
ranges from 0.34 to 0.42, and 0.36 to 0.43, respectively, for temperature and
passive in vivo fluorescence, see Seuront et al. (1996a,b), Seuront (1997); and 
H < 0.12 for fluorescence over scales dominated by biological activity, see
Seuront et al. (1996a)]. The second term expresses a deviation from homogene-
ity [in which case z(q) = qH], and represents the intermittency effects.

Double Trace Moment. The Double Trace Moment analysis technique (Laval-
lée, 1991; Lavallée et al., 1992) is a generalization of the expression given by equa-
tions (15) and (17) to a quantity (fL)h by taking the hth power of the field
fL—which is the general field Fl defined by equation (19) at the scale ratio L—
and then studying its scaling behaviour at decreasing value of the scale ratio l ≤
L. Hence, the new generated field has the following multiscaling behaviour:

73fh
l,L4q8 < l

K(q,h) (23)

where K(q,h) is the double trace moment scaling exponent related to K(q,1) ;
K(1) by:

K(q,h) = K(qh) – qK(h) (24)
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which gives for universality classes [using equation (17)]:

K(q,h) = haK(q) (25)

The scaling exponent K(q,h) is estimated by the slope of the linear trends of

73fh
l,L4q8 versus l in a log–log plot. By keeping q fixed (but different from the

special values 0 and 1), the slope of )K(q,h)) as a function of h in a log–log graph
gives the value of the index a and C1 is estimated by the intersection with the line
h = 1. Varying then allows a systematic verification of equation (25), and hence
the universality hypothesis.

Case study: tidally turbulent coastal waters of the Eastern English Channel

Data sampling

Sampling experiments were conducted during 46 h and 24 min in a period of
spring tide, from 2 to 4 April 1996, at an anchor station (Figure 12) located in
inshore waters of the Eastern English Channel (50°479300 N, 1°339500 E).
Temperature and salinity, regarded as passive scalars under purely physical
control of turbulent motions, and phytoplankton biomass, estimated from
measurements of in vivo fluorescence intensity, were simultaneously recorded
from a single depth (10 m) with Sea-Bird 25 Sealogger CTD probe and a Sea Tech
fluorometer, respectively. Our analyses are based on three time series recorded
at 1 Hz (i.e. 167 040 data), which contain temperature, salinity and fluorescence
data, labelled A, B and C, respectively. Samples of these data are shown in Figure
13. Every hour, samples of water were taken at 10 m depth to estimate chloro-
phyll a concentrations, which appear significantly correlated with in vivo fluor-
escence (Kendall’s t = 0.652, P < 0.05).

Scaling and multiscaling of temperature, salinity and fluorescence fields

Power spectral analysis. We compute the Fourier power spectra of temperature,
salinity and in vivo fluorescence fluctuations in order to estimate the mean scaling
properties of those different fields (Figure 14). The temperature and salinity
power spectra exhibit very similar scaling behaviours [i.e. E(f) ~ f–b, where f is
the frequency] over the whole range of studied scales (Figure 14a and b). Over
smaller scales (1–1000 s), the observed power law trend gives b < 1.72 and b <
1.67 for temperature and salinity, respectively. Over larger scales (>1000 s),
temperature and salinity power spectra both exhibit steeper power law trends
with b < 1.98 and b < 2.25, respectively. The fluorescence power spectrum
(Figure 14c) presents a slightly complex behaviour with three scaling tendencies
for scales ranging from 1 to 20 s with b < 1.77, from 20 to 1000 s with b < 0.66
and for scales larger than 1000 s with b < 1.96. Those temporal transitional scales
can be associated with spatial scales using probably the most cited and widely
used method of relating time and space, ‘Taylor’s hypothesis of frozen turbulence’
(Taylor, 1938), which basically states that temporal and spatial averages t and l,
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respectively, can be related by a constant velocity V, l = V · t. Then, using the
mean instantaneous tidal circulation of ~0.541 m s–1 (0.541 ± 0.126 SE), observed
during the field experiment, the associated transitional length scales are around
12 and 540 m for in vivo fluorescence, and 540 m for temperature and salinity.

At small scales, the relative proximity between the spectral behaviour of
temperature, salinity and fluorescence seems to confirm the hypothesis of passiv-
ity of phytoplankton biomass in a turbulent environment. Indeed, the departure
from the expected theoretical value (b < 5/3) associated with the behaviour of a
passive scalar in fully developed turbulence (Obukhov, 1949; Corrsin, 1951) is not
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Fig. 12. Study area and location of the sampling station (*) along the French coast of the Eastern
English Channel.



significant (modified t-test, P < 0.05; Scherrer, 1984). These results, in agreement
with previous field studies showing chlorophyll spectra which follow approxi-
mately the –5/3 power law (e.g. Platt, 1972; Powell et al., 1975), seem to indicate
that, over these small scales, the space–time structure of phytoplankton biomass
is primarily influenced by the dynamics of the physical environment, rather than
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Fig. 13. A portion of temperature, salinity and in vivo fluorescence time series (from top to bottom)
recorded in the Eastern English Channel. Sharp fluctuations occurring on all time scales are clearly
visible, indicating the intermittent behaviour of the dataset.



the behaviour of the organisms themselves. On the other hand, over larger scales
(i.e. 20 and 1000 s, or 12 and 540 m), fluorescence also exhibits a very specific
spectral behaviour, independent of the physical forcings, with b < 0.66. This
result roughly fits with theoretical and experimental results (Powell et al., 1975;
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Fig. 14. The power spectra E(f) (f is frequency) of temperature (a), salinity (b) and in vivo fluor-
escence (c), shown in log–log plots. Temperature and salinity power spectra exhibit two similar scaling
regimes for scales ranging from 1 to 1000 s and for scales >1000 s, whereas in vivo fluorescence power
spectrum exhibits a more complex behaviour with three scaling regimes for scales ranging from 1 to
20 s, 20 to 1000 s and for scales >1000 s.



Denman and Platt, 1976; Denman et al., 1977; Bennett and Denman, 1985; Steele
and Henderson, 1992; Powell and Okubo, 1994) predicting that the phyto-
plankton biomass spectrum will be flatter than the spectrum of a scalar contam-
inant of the flow field and indicating that in this region different processes
contribute to the variance of phytoplankton biomass, i.e. that temporal variabil-
ity in the biological parameters such as cell growth and community structure has
an important role in shaping the phytoplankton biomass distribution.

On the other hand, for scales larger than 1000 s (or 540 m), the spectral ex-
ponents b are obviously larger than the theoretical b < 5/3 (modified t-test, P >
0.05; Scherrer, 1984) and the spectral exponent of salinity appears significantly
larger than the exponents of temperature and the fluorescence, which cannot be
distinguished (Tukey multiple comparison test, P < 0.05; Zar, 1996). This scaling
behaviour, obviously independent of turbulent processes, may then qualitatively
(we try a quantification latter) be related to the very specific structuration of the
hydrological pattern of the Eastern English Channel. Indeed, the megatidal
regime and the fluvial supplies distributed from the Bay of Seine to Cape Griz-
Nez along the French coast generate a heterogeneous coastal water mass which
drifts nearshore, separated from the open sea by a frontal area (Brylinski and
Lagadeuc, 1990; Lagadeuc et al., 1997)—known as the ‘coastal flow’ (Brylinski
and Lagadeuc, 1990; Brylinski et al., 1991)—and characterized by its freshness,
turbidity (Dupont et al., 1991) and phytoplankton richness (Quisthoudt, 1987;
Brylinski et al., 1991). The very specific scaling behaviour previously described
can then be associated both with the coastal heterogeneity related to the progres-
sive integration of freshwater inputs to marine waters (Brylinski et al., 1991;
Lagadeuc et al., 1997) and with the influence of a frontal area, as suggested by the
closeness of the scaling exponent b with the theoretical b < 2 expected in the case
of frontal mixing (Kraichnan, 1967; Bennett and Denman, 1985).

Multifractality of oceanic turbulent fields. The computations of the temperature,
salinity and in vivo fluorescence structure functions (i.e. <(DTt)q>, <(DSt)q> and
<(DFt)q>, respectively) confirm the scaling regimes previously shown by spectral
analysis for different orders of moments q (Figure 15). The slopes, fitted to the
data by least squares over the range of scale values for which the data are scaling
(i.e. the curves are linear), provide estimates of the exponents z(q).

The scaling of the first moment z(1) [z(1) = H] for temperature, salinity (over
scales smaller than 1000 s, or 540 m) and fluorescence (over scales smaller than
20 s, or 12 m) are not significantly different (Analysis of Covariance, P < 0.05;
Zar, 1996), with z(1) = 0.40 ± 0.01, z(1) = 0.38 ± 0.01 and z(1) = 0.43 ± 0.01, respect-
ively. Here, as below, the error bars come from the different portions of the
dataset analysed separately: for example, with the scaling of temperature and
salinity up to 1000 s and a database of 167 040 points, we can estimate the ex-
ponents for 167 non-overlapping intervals. For scales larger than 1000 s, the
scaling exponents H (see Table I) appear significantly different for the tempera-
ture, salinity and fluorescence fields (Analysis of Covariance, P > 0.05; Zar, 1996),
the scaling exponents being significantly larger for salinity than those related to
temperature and fluorescence, which remain indistinguishable (Tukey multiple
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Fig. 15. The structure functions <(DTt)q>, <(DSt)q> and <(DFt)q> versus t in log–log plots for q = 1,
2 and 3 for temperature (a), salinity (b) and in vivo fluorescence (c). Two and three linear trends are
clearly visible on the one hand for temperature and salinity, and on the other hand for in vivo fluor-
escence (see Table I for slope estimates).



comparison test, P < 0.05; Zar, 1996). Over intermediate scales (i.e. from 20 to
1000 s), in vivo fluorescence structure functions <(DFt)q> for the first order of
moment show no slope, i.e. z(1) = H < 0, indicating a conservative behaviour (i.e.
fluctuations of fluorescence are scale independent). In the same way, the scaling
of the second-order moments confirms the estimates of b from the power spectra
[b = 1 + z(2)] for each scaling regime (cf. Table II).

More generally, the non-linearity of the empirical curve z(q) in Figure 16 shows
that these different fields can be considered as multifractals; the curves corres-
ponding to temperature and in vivo fluorescence (i.e. phytoplankton biomass) are
very close to each other for scales smaller than 1000 s and 20 s, respectively
(Figure 16a and b), and for scales larger than 1000 s (Figure 16d and e). Within
experimental error, they cannot be qualitatively (we try a quantification later)
showed as being different. On the contrary, the empirical curves z(q) for salinity
(Figure 16c and f) are slightly different, showing more convex behaviours, espe-
cially on large scales (Figure 16f), whereas in vivo fluorescence z(q) exhibits a
very specific behaviour (Figure 17) over scales between 20 and 1000 s. It can be
noticed that the empirical moment scaling exponent K(q), obtained by the esti-
mates of the slopes of the linear trend of <(Fl)q> versus l in a log–log plot (Figure
18a) from equation (15), clearly exhibits multifractal properties previously
described (Figure 18b; cf. Figure 8) and confirms the link existing between the
exponents K(q) and z(q) given by equations (17) and (22) (Figure 18b).

Universality of turbulent oceanic fields. We realize a quantitative description of
scale invariant fields computing estimations of universal parameters and using the
DTM analysis technique (Lavallée, 1991; Lavallée et al., 1992), basically applied
to a great variety of geophysical data (Schmitt et al., 1992a,b, 1993; Teissier et al.,
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Table I. Empirical estimates of the spectral exponent b, and the first and second moment scaling
exponent z(1) = H and z(2) for temperature, salinity and in vivo fluorescence for the different scaling
regimes encountered

t < 20 s 20 < t < 1000 s t > 1000 s
——————————– ——————————– ——————————–
H z(2) b H z(2) b H z(2) b

Temperature 0.40 0.71 1.72 0.40 0.71 1.72 0.64 0.97 1.98
Salinity 0.38 0.67 1.67 0.38 0.67 1.67 0.80 1.22 2.25
Fluorescence 0.43 0.75 1.77 0.00 –0.35 0.66 0.66 0.97 1.96

Table II. Empirical estimates of the universal multifractal parameters C1 and a for temperature,
salinity and in vivo fluorescence for the different scaling regimes encountered

t < 20 s 20 < t < 1000 s t > 1000 s
—————————— —————————— ————————————
C1 a C1 a C1 a

Temperature 0.05 1.90 0.05 1.90 0.24 1.35
Salinity 0.05 1.90 0.05 1.90 0.27 1.50
Fluorescence 0.06 1.80 0.20 1.60 0.24 1.37



1993a,b; Chigirinskaya et al., 1994, 1997; Lazarev et al., 1994; Falco et al., 1996),
based on multiscaling properties of the intermittent fluxes Fl (i.e. obtained by
fractional differentiation of order H) of temperature, salinity and fluorescence
fields as defined in equation (19). The scaling of the intermittent fluxes <(f

h
l,L)q>

(Figure 19) is shown for q = 2 and different values of h. The slopes of <(f
h
l,L)q>
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Fig. 16. The scaling exponent structure function z(q) empirical curves (dots), compared to the
monofractal curves z(q) = qH (dashed line), and to the universal multifractal curves (continuous
curve) obtained with C1 and a (cf. Table II) in equation (22) for temperature, salinity and in vivo
fluorescence over small scales (i.e. scales smaller than 1000 s for temperature and salinity, and smaller
than 20 s for in vivo fluorescence) and large scales (i.e. scales >1000 s). The empirical curves are non-
linear, indicating multifractality.



versus l in a log–log plot, fitted by least squares, are the estimates of K(q, h). The
linear trends of the curves K(q, h) versus h, plotted in a log–log graph, show that
equation (25) is well respected for a wide range of h values (Figure 20). Their
slopes and the intercepts give, respectively, the estimates of a and C1, wholly
presented in Table II, and suggest an increasing heterogeneity and a decreasing
multifractality from small to large scales for both physical and biological
parameters, globally leading to view the distributions of these parameters as more
patchy distributed on larger scales.

To test the validity of the estimates of a and C1 of the intermittent fields, we fit
the empirical scaling exponent z(q) with the theoretical universal multifractal
expression given by a and C1 (Table II) in equation (22). The universal multifrac-
tal and empirical fits are excellent until critical moment of order qc (Table III),
after which the empirical curves are linear (Figures 16 and 17). This linear behav-
iour of the empirical scaling exponent structure function z(q) is known for
sufficiently high-order moments (Schertzer and Lovejoy, 1989) and is due to
sampling limitations (i.e. second-order multifractal phase transition; Schertzer and
Lovejoy, 1992) or is associated with a divergence of statistical moments (i.e. first-
order multifractal phase transition; Schertzer and Lovejoy, 1992) if substantiated
by large enough sample size. In both cases, for q ≥ qc, the empirical z(q) follows:

z(q) = 1 – gmaxq (26)

where gmax is the maximum singularity associated to qc. In the case of a first-order
phase transition, qc corresponds specifically to maximum singularity measured,
which is associated with the occurrence of very rare and violent singularities,
whereas in the case of a second-order multifractal phase transition, qc corresponds
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Fig. 17. The scaling exponent structure function z(q) empirical curves (dots), compared to the
universal multifractal curve obtained with C1 and a (cf. Table II) in equation (22) for in vivo fluor-
escence for scales bounded between 20 and 1000 s, where biological activity has an important role in
shaping the phytoplankton biomass distribution.



to the maximum singularity effectively measurable from a finite sampling [see
Schmitt et al. (1994) for further developments].

In order to differentiate between first and second multifractal phase transitions,
we then compute the theoretical value of the critical moment qs expected in the
case of sampling limitations given by (Schertzer and Lovejoy, 1992):

1 1/a
qs = 1—– 2 (27)

C1

and compare it with the qc estimated from the empirical z(q) (see Figures 16 and
17). With the values of a and C1 estimated above (Table II), we obtain qs values
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Fig. 18. The curves <(wl)q) versus l in a log–log plot for in vivo fluorescence for scales ranging from
20 to 1000 s (a). The slopes of straight lines indicating the best regression over the range of scales
provide estimates of the empirical scaling exponent K(q) [(b), dark circles; cf. equation (15)] which
is compared to the K(q) estimated following K(q) = qH – z(q) [open circles; cf. equation (22)].
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Fig. 19. The curves <(fl
h

,L)q> versus l for temperature (a), salinity (b) and in vivo fluorescence (c)
over small scales (i.e. scales smaller than 1000 s for temperature and salinity, and smaller than 20 s
for in vivo fluorescence) shown in a log–log plot for q = 2.5 and for different values of h (h = 0.2, 0.5,
1, 1.4, 2 and 2.5 from bottom to top). The slope of the linear trends provides estimates of the double
trace moment scaling exponent K(q, h) [cf. equation (23)].
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Fig. 20. The curves K(q, h) versus h in a log–log plot for q = 2.5 and 3 (from bottom to top) for
temperature (a), salinity (b) and in vivo fluorescence (c), where K(q, h) = haK(q). The slope of the
straight lines then gives the estimates of a and C1 is estimated by the intercept.



very close to the values estimated from the empirical curves z(q) for intermediate
and large-scale fluorescence, but also for temperature and salinity for scales
larger than 1000 s (qc < qs). Those critical moments are therefore only linked to
sampling limitations (i.e. second-order multifractal phase transition), because we
had to average the original time series up to the scale of 20 and 1000 s, in order
to be in the appropriate ranges of scales. On the contrary, on smaller scales, the
situation is obviously different with qc < qs, clearly indicating that the critical
moments qc are independent of sampling and characterizing the occurrence of
very rare and violent singularities in our dataset (i.e. first-order multifractal phase
transition).

Those results, showing the extreme similarity of temperature, salinity and
fluorescence field on small scales (see Tables I, II and III), can be regarded as a
quantitative verification of the hypothesis of small-scale fluorescence as being a
purely passive scalar and generalization of previous works which tested the
passivity assumption using only power spectra (i.e. a second-order moment).
Furthermore, the very specific non-linear behaviour of the structure functions
scaling exponent z(q) for in vivo fluorescence over scales ranging from 20 to
1000 s as the differences perceived in temperature, salinity and fluorescence
distributions for scales larger than 1000 s indicate that variability can also be
wholly described in a universal multifractal framework even over scales domi-
nated by non-turbulent processes.

Discussion

Scales of patchiness for intermittent fields in turbulent coastal waters

Small scales. The present case study has shown that on small scales (i.e. < 20 s, or
12 m, for in vivo fluorescence and < 1000 s, or 540 m, for temperature and salin-
ity), in vivo fluorescence, temperature and salinity spectral behaviours are statis-
tically indistinguishable and closely follow the –5/3 power law derived by
Kolmogorov (1941) for the inertial subrange of turbulent velocity fields. This is
the region of the turbulence spectrum where energy transferred from larger
eddies (i.e. large-scale eddies induced by external forcings such as wind and tidal
patterns) to the smallest eddies which dissipate their energy into heat (i.e. viscous
dissipation cannot be neglected and smooth out turbulent fluctuations). That
implies that the distribution of phytoplankton was governed primarily by the
turbulent environment, and not by the net growth rate (which includes division
and predation) of cells themselves. One may note here that in the case of inter-
acting species (i.e. intra- and interspecific interactions), the power spectrum of
phytoplankton biomass fluctuations should have exhibited a steeper slope, even
for the inertial subrange (i.e. b = 3; Powell and Okubo, 1994).

Subsequent multifractal analysis confirms and generalizes these observations.
Indeed, the relative commonality of the estimates of the three basic universal
multifractal parameters, H, C1 and a—but also the critical moments qc—of
temperature, salinity and phytoplankton biomass, then reflects profound
couplings between space–time structure of phytoplankton populations and the
structure of their physical environment (see Tables II and III), as previously
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suggested by simple representations of the extreme intricacy between the
space–time scales of physical and biological marine processes (Stommel, 1963;
Haury et al., 1978; Steele, 1978; Marquet et al., 1993). Furthermore, the universal
multifractal parameters H, C1 and a obtained from the present study (cf. Table
II) appear very similar to those obtained from previous studies conducted in
different water masses and tidal conditions (Table IV). This suggests that the
small-scale variability of phytoplankton biomass, wholly characterized in terms
of multifractality, cannot be regarded as density dependent, as previously found
by Prairie and Duarte (1996) in a various set of marine and freshwater phyto-
plankton distribution. One may also note that the difference between the esti-
mates of H, C1 and a observed during spring and neap tides (cf. Table IV) did
not suggest any tidal dependence of the distribution of both physical and
biological parameters. However, in a recent monofractal study of vertical phyto-
plankton variability also conducted in the coastal waters of the Eastern English
Channel, Seuront and Lagadeuc (1998) showed both a density dependence and
a tidal dependence of phytoplankton biomass distribution associated with the
inshore–offshore hydrological gradient and the flood/ebb alternance, respect-
ively. This study, involving narrower ranges of spatio-temporal scales, then
cannot be directly compared with the present results. Further investigations are
therefore still needed to identify the relative effects of different advection
processes and hydrodynamics on the structuration of phytoplankton biomass
variability, for instance by considering shorter datasets differentially distributed
over a whole tidal cycle, but it was not the aim of this paper.

The examination of the critical moments qc (Table III) led to further
conclusions. Indeed, our results showed that during a period of spring tide qc <
qs [where qc and qs are the empirical moments after which the scaling exponent
z(q) is linear, and the theoretical critical moment characterizing sampling limi-
tations, respectively], while similar studies conducted during a period of neap tide
(Seuront et al., 1996a) rather suggest qc < qs [qs < 6.0, with C1 = 0.04 and a = 1.80
in equation (27) for phytoplankton biomass]. This could, therefore, suggest a
differential intermittent behaviour of physical (i.e. temperature and salinity) and
biological (i.e. phytoplankton biomass) variability in spring and neap tides. Spring
tide physical and biological variability are characterized by more violent events
than during neap tide. Such a difference in the occurrence of extreme events
between different hydrodynamic conditions may be of prime interest in future
studies in planktonology following the recent emphasis on understanding
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Table III. Theoretical and empirical estimates of the critical moment qs for temperature, salinity and
in vivo fluorescence for the different scaling regimes encountered

t < 20 s 20 < t < 1000 s t > 1000 s
—————————— —————————— ————————————
qs (theoretical) qs (empirical) qs (theoretical) qs (empirical) qs (theoretical) qs (empirical)

Temperature 4.84 2.50 4.84 2.50 2.88 2.80
Salinity 4.84 3.20 4.84 3.20 2.39 2.50
Fluorescence 4.77 2.70 2.73 2.80 2.83 2.75



detailed mechanisms that determine each individual feature (Yamazaki, 1993;
Paffenhöfer, 1994). Moreover, one may note here that our multifractal approach
provides a very precise statistical description of the studied processes (i.e. esti-
mates of all moments, even non-integers, up to moment of order 5), while the
characterization of other non-Gaussian empirical data or processes is basically
limited to their three first moments (average, variance and skewness).

This demonstrated small-scale structured (i.e. non-random) distribution of
phytoplankton biomass should therefore constitute an important subset in the
growing field of determining the influence of turbulence on plankton ecosystems
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Table IV. Values of the universal multifractal parameters H, C1 and a obtained by Seuront et al.
(1996b) in the Eastern English Channel at the end of March 1995 during a period of spring tide (a), by
Seuront (1997) and Seuront et al. (1996a) in the Southern Bight of the North Sea in June 1991 during
periods of neap tide (b and c, respectively), and compared to the values obtained in the present study
(d). The values of the slopes of the Fourier power spectra b are also indicated

(a)

t < 13 s
——————————–—
b H C1 a

Temperature 1.65 0.34 0.035 1.70
Salinity – – – –
Fluorescence 1.66 0.36 0.035 1.80

(b)

t < 100 s 100 s < t < 6 h
———————————– ——————————–—
b H C1 a b H C1 a

Temperature 1.75 0.41 0.05 1.75 1.75 0.41 0.05 1.75
Salinity – – – – – – – –
Fluorescence 1.78 0.43 0.045 1.85 – – – –

(c)

t < 100 s 100 s < t < 12 h
———————————– ——————————–—
b H C1 a b H C1 a

Temperature 1.74 0.42 0.04 1.70 1.74 0.04 0.05 1.70
Salinity – – – – – – – –
Fluorescence 1.75 0.41 0.04 1.80 1.22 0.12 0.02 0.80

(d)

t < 20 s 20 < t < 1000 s 1000 s < t < 48 h
———————————– ——————————–— ————————————
b H C1 a b H C1 a b H C1 a

Temperature 1.72 0.40 0.05 1.90 1.72 0.40 0.05 1.90 1.98 0.64 0.24 1.35
Salinity 1.67 0.38 0.05 1.90 1.67 0.38 0.05 1.90 2.25 0.80 0.27 1.50
Fluorescence 1.77 0.43 0.06 1.80 1.66 0.00 0.20 1.60 1.96 0.66 0.24 1.37



(e.g. Costello et al., 1990; Marrasé et al., 1990; Granata and Dickey, 1991;
Yamazaki and Kamykowski, 1991; Madden and Day, 1992; Kiørboe, 1993).
Indeed, it is noteworthy that the present understanding of turbulence incorpor-
ated into most aspects of marine and freshwater biology is that turbulence has an
essentially random effect on transport. This view is predicated on the assumption
that transport in a turbulent flow is similar to molecular transport and diffusion,
and is consequently reflected in plankton transport models (Okubo, 1986; Roth-
schild and Osborn, 1988; Yamazaki, 1993), as well as other areas in which turbu-
lence is important (McCave, 1984; Davis et al., 1991; Yamazaki and Haury, 1993).
Moreover, heterogeneous particle distributions, such as the very specific phyto-
plankton distribution analysed here in the universal multifractal framework, may
also have salient consequences, as demonstrated by Currie (1984) on the basis of
Taylor approximations of the Michaelis–Menten function, on non-linear concen-
tration-dependent processes such as phytoplankton coagulation (Riebesell,
1991a,b; Kiørboe et al., 1994; Kiørboe, 1997), the encounter of a mate during
sexual reproduction (Waite and Harrison, 1992), the encounter rates between a
zooplanktonic predator and its prey (Rothschild and Osborn, 1988; Sundby and
Fossum, 1990; MacKenzie et al., 1994; Raby et al., 1994; Kiørboe and MacKenzie,
1995; MacKenzie and Kiørboe, 1995), and then may provide new perspectives in
the research on primary and secondary production.

Another salient consequence suggested by our results is that turbulent
processes cannot be regarded as log–normally distributed, as propounded by
many workers (Gregg et al., 1973; Belyaev et al., 1975; Osborn, 1978; Elliott and
Oakey, 1979; Gregg, 1980; Wasburn and Gibson, 1984; Oakey, 1985; Osborn and
Lueck, 1985a,b; Baker and Gibson, 1987; Gibson, 1991). Log–normal distribution
being a particular case of multifractal distribution [i.e. a = 2 in equations (17) and
(22)], our universal multifractal characterization of small-scale temperature and
salinity variability therefore indicates another level of structuration of turbulent
fluid motions. Universal multifractal and log–normal distributions can be
regarded as belonging to a particular family of skewed distributions reflecting a
heterogeneous distribution with a few dense patches and a wide range of low-
density patches. This means that occasionally we should expect stronger bursts,
more often than in the Gaussian case, characterizing intermittent processes. The
phenomenon of intermittency, which is discussed in more detail elsewhere
(Jiménez, 1997; Jou, 1997), has recently been shown to be associated with the
presence of strong coherent vortices, with diameter of the order of 10 times the
Kolmogorov scale (i.e. the Kolmogorov length scale), but with much longer
lengths and probably long lifetimes (Jiménez et al., 1993; Jiménez and Wray,
1994).

Coarse scales. On coarser scales (i.e. 20–1000 s, or 12–540 m), the power spec-
trum of phytoplankton density fluctuations is flatter (i.e. ‘whiter’) than the –5/3
energy spectrum, i.e. the intensity of patchiness is less than that of environmental
turbulence fluctuations. Denman and Platt (1976) and Denman et al. (1977) first
described these relationships for the inertial subrange. They defined three distinct
regions in the phytoplankton biomass power spectrum. If t (s) represents the time
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taken for a turbulent eddy to transfer its energy to an eddy half its size, and µ
(s–1) is the doubling rate of the phytoplankton, then for µ–1 >> t, the growth rate
of the phytoplankton is insufficient to produce a spatio-temporal distribution that
is different from that of purely passive quantities such as temperature or salinity.
The phytoplankton behave as passive tracers; thus, the slope of the power spec-
trum of phytoplankton density fluctuations is similar to that for environmental
fluctuations, both in the inertial subrange (b < 5/3) and in two-dimensional turbu-
lence (b < 3; Gower et al., 1980; Deschamps et al., 1981; Abraham, 1998).
However, for µ–1 << t, the phytoplankton are doubling sufficiently quickly for
their spatio-temporal distribution to be no longer nullified by turbulence. The
spatio-temporal structure of the community cannot be destroyed by the diffusive
action of the eddies, and in this case theoretical curves indicate a flattening of the
phytoplankton biomass spectrum, i.e. b < 1, both in the inertial subrange
(Denman and Platt, 1976; Denman et al., 1977) and in two-dimensional turbu-
lence (Bennett and Denman, 1985; Powell and Okubo, 1994). For µ–1 < t, a tran-
sitional regime where neither process dominates occurs, and the spatial patterns
formed may be the result of a complex interaction between t and µ. This tran-
sition zone corresponds to the minimum patch which can maintain itself in the
face of diffusion, known as the KISS length (Okubo, 1978, 1980). The relation-
ship between t and µ has been further quantified by Denman et al. (1977), who
proposed a critical patch size for phytoplankton in the open ocean of 5–10 km,
while other theoretical studies have derived a characteristic patch size of 1–2 km
for phytoplankton populations in bloom conditions (e.g. Okubo, 1980).

Yet, the interpretation of the proximal cause of small-scale plankton patchiness
has then been in terms of population growth rather than aggregation of organ-
isms which grew elsewhere. However, one may note here that the characteristic
time and space scales associated with the flattening of our phytoplankton biomass
spectrum (i.e. 1000 s, or 540 m) occurs for scales significantly smaller than the
generation time of phytoplankton populations (i.e. < 1 day) and the critical patch
size found in the literature. In that way, comparisons of our universal multifrac-
tal distribution of phytoplankton biomass z(q) (cf. Figure 17) to the structure
function scaling exponent zF(q) = –K(q/2) of a biologically active scalar derived
by Seuront et al. (1996b) from the previous theoretical results of Denman and
Platt (1976) and Denman et al. (1977) then lead to further conclusions. Phyto-
plankton distributions observed in the Eastern English Channel and in the South-
ern Bight of the North Sea, respectively, over time scales ranging from 20 to 1000 s
(i.e. 12–540 m) and for time scales >100 s (i.e. 30 m) (Table IV; Seuront et al.,
1996a), are obviously different from the theoretical curve zF(q) (Figure 21). This
suggests that aggregation processes occurring over these ranges of scales cannot
be strictly associated with phytoplankton growth rates. Indeed, field studies
frequently suggest that plankton aggregations can also be associated with hydro-
dynamic discontinuities such as fronts and eddies (Alldredge and Hammer, 1980;
Mackas et al., 1980; Herman et al., 1981; Owen, 1981), while some theoretical
studies proposed patch-generating mechanisms associated with Langmuir cells
(Stommel, 1949; Stavn, 1971), internal waves (Kamykowski, 1974), tidal current
shear (Riley, 1976), wind-driven currents (Verhagen, 1994) and grazing activity
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(Evans, 1978). In the present case, plankton patches are obviously too small in
spatial dimension and too transitory in duration to be the results of reproductive
population increase. This suggests another level of complexity in the patch-gener-
ating mechanisms, such as complex interactions between the turbulence level of
fluid motions (e.g. different tidal and wind conditions), the phytoplankton
biomass concentration and the specific composition of phytoplankton assem-
blages, highly variable all along the year in the Eastern English Channel and in
the Southern Bight of the North Sea (Martin-Jezequel, 1983; Gentilhomme and
Lizon, 1998). This seems indeed to be the case following the differences observed
in the universal multifractal parameters between exeriments conducted in the
Eastern English Channel during a period of spring tide (i.e. H = 0.00, C1 = 0.20
and a = 1.60; present study), and the Southern Bight of the North Sea (H = 0.12,
C1 = 0.02 and a = 0.80; Seuront et al., 1996a). Phytoplankton biomass then appears
to be more conservative (i.e. low H value, the mean of the fluctuations is then less
scale dependent, indicating a reduced flux from large to small scales), more
heterogeneously distributed (i.e. high C1 value corresponding to sparse patches)
and structured (i.e. high a value indicating a higher multifractality, that is to say
the occurrence of numerous intermittency levels between maximum and
minimum concentrations) in the Eastern English Channel than in the North Sea.
Whatever that may be, further investigations are still needed to estimate the rela-
tive importance of hydrodynamic, hydrological, seasonal processes and their
related populational, biological and physiological effects on the precise structure
of phytoplankton fields.

At larger scales (i.e. >1000 s, or 540 m), the situation is quite different, phyto-
plankton biomass variability appearing essentially similar to temperature vari-
ability, suggesting a decoupling between phytoplankton and salinity dynamics.
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Fig. 21. The empirical structure function scaling exponent z(q) estimated for in vivo fluorescence for
scales ranging from 20 to 1000 s (continuous curve) compared to the universal multifractal functions
obtain with C1 and a in equation (22) (open circles) and to the theoretical formulation for z(q)
proposed by Seuront et al. (1996b) as an extension of previous spectral and dimensional theoretical
works by Denman and Platt (1976) and Denman et al. (1977) (dashed curve).



Then, over this range of scales, river inflow cannot be directly regarded as a
source of phytoplankton biomass variability, which seems to be rather controlled
by mixing processes associated with the frontal area separating inshore and
offshore waters, as suggested by the very specific spectral behaviour (i.e. b < 2;
Kraichnan, 1967; Bennett and Denman, 1985) and the extreme similarity existing
between the universal multifractal parameterization of temperature and in vivo
fluorescence (cf. Table II). However, both the coastal heterogeneity in salinity
related to the progressive integration of freshwater inputs to marine waters
(Brylinski et al., 1991; Lagadeuc et al., 1997) and the haline stratification existing
at the mouth of estuaries which maintains nutrient-rich waters favouring the initi-
ation of phytoplankton blooms (Pingree et al., 1986) can also be regarded as
potential sources of heterogeneity in the coastal distribution of phytoplankton
biomass in this area. In that way, one may also note that the occurrence of a joint
transition zone for these three parameters demonstrates that the scales of the
physics and biology were nearly coincident, even when the interactions are not
necessarily closely coupled. This could suggest a differential physical control of
phytoplankton biomass distribution, the precise nature of these interactions
remaining unresolved. The values of the universal multifractal parameters, H, C1
and a (see Table II), nevertheless indicate a more patchy distribution of tempera-
ture, salinity and phytoplankton biomass in comparison with the scales domin-
ated by tri-dimensional turbulent processes (i.e. the inertial subrange) where
heterogeneity was very low (i.e. C1 values) and multifractality approached its
upper limit (i.e. a < 2).

Multifractal analysis: a new way of looking across scales for intermittent
processes

The different transition zones separating the previously described partial scaling
behaviours indicate characteristic scales where the environmental properties or
constraints acting upon organisms, or more generally the structure of the vari-
ability of a given field, are changing rapidly (Frontier, 1987; Seuront and
Lagadeuc, 1997). The concepts of ‘scale’ and ‘pattern’ being ineluctably inter-
twined (Hutchinson, 1953), the identification of scales, which is at the core of our
thought process, then appears to be essential to the identification and charac-
terization of patterns (Legendre and Fortin, 1989; Wiens, 1989; Jarvis, 1995). The
problem of scale has fundamental applied importance in ecosystem modelling.
Until now, the study of population variability has required the selection of an
appropriate region of the space–time domain (Steele, 1988). For instance, the
general circulation models that provide the basis for climate prediction (Hansen
et al., 1988), as well as the regional circulation models (Nihoul and Djenidi, 1991;
Salomon and Breton, 1993), operate on spatial and temporal scales many orders
of magnitude greater than the scales at which most ecological processes, such as
physiological and behavioural responses of phytoplankton and zooplankton,
occur. Moreover, the development of new observation techniques such as remote
sensing, while providing very exciting images of surface patterns of both chloro-
phyll and temperature over a wide range of scales (Abbott and Zion, 1985, 1987;
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Denman and Abbott, 1988), must also lump functional ecological classes, some-
times into very crude assemblages, suppressing considerable detail, whereas
ecological studies require that we sample spatially and temporally as fully as poss-
ible (see, for example, Platt et al., 1989). By interfacing individual-based models
with fluid dynamics models, therefore, one seeks to interrelate phenomena acting
on different scales (Billen and Lancelot, 1988; Sharples and Tett, 1994; Zakard-
jian and Prieur, 1994), but it is still necessary to have available a suite of models
of different levels of complexity and to understand the consequences of suppress-
ing or incorporating details. Actual key challenges in the study of ecological
systems therefore involve ways to deal with the collective dynamics of heteroge-
neously distributed ensembles of individuals, and to understand how to relate
phenomena across scales, i.e. to scale from small to large spatio-temporal scales
(Auger and Poggiale, 1996; Levin et al., 1997; Poggiale, 1998a,b).

However, the development of theoretical models which incorporate multiple
scales and which will guide the collection and the interpretation of data is still
lacking because of the insufficiency of techniques to look across scales (Steele,
1991). This is the major contribution of fractal geometry (Mandelbrot, 1977, 1983;
Frontier, 1987; Milne, 1988; Sugihara and May, 1990a), which is recognized to be
capable of describing how patterns change across scales. Then, basically assum-
ing that there is no single scale at which ecosystems should be described, there is
no single scale at which models should be constructed (Levin, 1992). Further-
more, Bellehumeur et al. (1997) showed that an ecological phenomenon spread
out in space and time does not have discrete spatial scales, but a continuum of
spatio-temporal structures whose perception depends on the size of the sampling
units, an assumption which greatly agrees with our multiscale approach. Conse-
quently, ecological processes seem to be better described by a continuum of scales
rather than a hierarchy of overlapped scales (Allen and Starr, 1982; O’Neill, 1989;
Allen and Hoekstra, 1991; O’Neill et al., 1991). In such a background, universal
multifractal formalism, leading to a very precise characterization of variability by
the way of continuous multiplicative processes (with the help of the three basic
empirical parameters), appears to be an efficient descriptive tool which should
also allow the modelling of the multiscale detailed variability of intermittently
fluctuating biological fields as the global properties of their surrounding physical
environment. Indeed, multifractal approaches are much better than the usual
approaches which give a description at a very limited range of scales. One may
note that models or direct numerical simulations possess no way to change the
scale upward (upscaling) or downward (downscaling). It is natural, on the
contrary, for multifractal processes. In fact, to evaluate the effects of the statis-
tics of the small-scale space–time patterns on the longer time scale global statis-
tics, one requires simultaneous simulations of both. Such simulations are,
however, now feasible using new multifractal techniques (Wilson et al., 1989;
Pecknold et al., 1993; Marsan et al., 1996, 1997), leading to the development of
exploratory studies of zooplankton behaviour within multifractal phytoplankton
fields (Marguerit et al., 1998) which can be regarded as a new way to investigate
the trophodynamics of zooplankton.

Multifractals and, in particular, universal multifractals then appear to be a

Multifractal analysis of phytoplankton distribution

913



potential powerful tool in analysing multiscale space–time variability of any inter-
mittent processes and improve on previous studies showing the applicability of
non-linear algorithms (Sugihara and May, 1990b; Sugihara et al., 1990; Ascioti et
al., 1993; Strutton et al., 1996, 1997a,b) and multifractal analysis (Pascual et al.,
1995) to both spatial and temporal planktonic data in several ways. First, the use
of universal multifractals provides three fundamental parameters characterizing
the organization, or structure, of the whole variability of a given intermittent
process, and then allows direct comparisons to be made between biological and
physical fields. That is, universal multifractal analysis can be regarded as a way to
delineate the relative contributions of the biological and physical processes to the
patterns observed, a major issue in marine ecology (Haury et al., 1978; Denman
and Powell, 1984; Legendre and Demers, 1984; Mackas et al., 1985; Daly and
Smith, 1993). Moreover, even if spectral analysis methods and concepts have
played a major role in previous work concerning the identification of the scales of
plankton patchiness (Platt and Denman, 1975; Platt, 1978; Fasham, 1978; Harris,
1980), they are largely insufficient to characterize the precise distribution of phyto-
plankton biomass, which appears to be essential to provide accurate estimates of
the magnitude of related key fluxes such as primary, new and export productions
following the extreme sensitivity of numerical modelling even to minor changes in
parameter values (Werner et al., 1993). Second, the predictive efficiency of non-
linear algorithms, based on interpolations of pre-existing data by a simplex
procedure [see, for example, Sugihara and May (1990b) for further details on the
nearest-neighbour algorithm] and essentially aimed to distinguish between deter-
minist and stochastic components of a given dataset, is poor in comparison with
the technique of simulating continuous multifractal cascades (Schertzer and
Lovejoy, 1987b; Wilson et al., 1991; Pecknold et al., 1993; Schertzer et al., 1998)
which produce fields which are very good approximations—at all scales and inten-
sities—of the statistics of the measured field, and determine the probability distri-
bution of the field values. Finally, using the concept of first- and second-order
multifractal phase transitions, we can characterize the strength of the very rare and
violent events present in a given dataset and quantify the range of statistical
moments which can be accurately estimated given the finite sample size, respect-
ively. In the general background of spatio-temporal intermittency encountered 
in the ocean (Platt et al., 1989), knowledge of the precise statistics of any
intermittent field may avoid the bias introduced by chronic undersampling of an
intermittent signal (Bohle-Carbonel, 1992). In that way, universal multifractals
may have considerable implications for the design and evaluation of potential
sampling schemes in coastal areas as in open ocean, but also to improve estimates
of stocks and fluxes associated with heterogeneous distribution of resources and
exploiters which will not be robust unless all processes are understood in detail.

These powerful applications of multifractals, which are still under development
in a conceptual and modelling way (Marsan et al., 1996, 1997; Schertzer et al.,
1998), can then provide new application fields to ecological sciences, opening a
large perspective in understanding ecosystem structure, and then could be
regarded as a new way to develop individual rather than global approaches in the
apprehension of any intermittent pattern and process.
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