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We consider here behavioural activity of copepods as a succession of symbols associated with
swimming states: slow swimming, fast swimming, break and grooming. We characterise these
symbolic sequences using tools from symbolic dynamics: probability density function of the
residence times in each state; transition probability at each time step; Shannon entropy and
dynamic entropy. This approach is applied to the swimming behaviour of Centropages hamatus
which we have analyzed as an example of application, in order to stress the differences
associated with turbulent and non-turbulent conditions. We characterise in this theoretical
framework the behavioural changes exhibited by the copepod under turbulent conditions.
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1. Introduction

The pelagic zone of the sea is a highly variable environment,
on a wide range of spatial and temporal scales. At small scales,
turbulence is well known to have an important influence on
small living particles until the Kolmogorov scale which is often
of the order of millimetres. For example, at the individual level,
turbulence may strongly increase encounter rates and hence
favour mating and predator prey interactions (Gerritsen and
Strickler, 1977; Evans, 1989; Mackenzie and Leggett, 1991;
Yamakazi et al., 1991; Viitasalo et al., 1998). Animals living in
this environment are adapted to this variability through specific
behavioural activities. Populations that are particularly affected
by their changing environment are the free living planktonic
organisms in the water column (Abraham, 1998). Recent
studies showed that many zooplankton species possess swim-
ming abilities associated with a specific and complex beha-
vioural activity (Dodson et al., 1997). Among these behavioural
studies, copepods received considerable attention (Buskey et
al., 1987; Yen and Strickler, 1996; McAllen and Taylor, 2001;
+33 321 992901.
oison).
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Schmitt and Seuront, 2001) because of their ecological
importance: they are the largest and most diversified group of
crustaceans and the most abundant metazoans in the aquatic
realm (Humes,1994;Hwanget al., 2004). Theyare also a critical
element in the oceanic food webs, linking primary producers
and higher trophics levels including early life stages of fishes.

The behaviour of copepods is often variable, with a suc-
cession of fast and slow swimming activities and rest periods
(Hwang and Strickler, 1994). As with other animals, it is then
useful to simplify the potentially chaotic behaviour by con-
sidering a finite partition of the space of all possible behaviours.
In this framework, behavioural activity can be represented by
a sequence of behavioural symbols. The analysis of such a
sequence belongs then to the field of symbolic dynamics, with
the study of their entropy properties, residence times, and
transition probabilities. It also allows us to characterize the
effect of external factors on these properties.

In this paper we illustrate this symbolic dynamics approach
using previous behavioural information on the copepod Centro-
pages hamatus, whose basic swimming and feeding strategies
andbehaviouralperformanceunder turbulentandnon-turbulent
conditions have been previously reported (Hwang et al., 1994;
Hwang and Strickler, 1994, 2001). We adopted some techniques
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andmethods from the fields of information theory and statistical
physics, in order to consider symbolic dynamics and to better
understand its statistics in the context of variable turbulent
environment. Thismayprovide a generalmethodology for study-
ing copepod behaviour dynamics, and more generally animal
behaviour.

The first section below presents the theoretical framework
which is considered in this paper, using concepts from
symbolic dynamics such as Shannon entropy and dynamic
entropies, exit time probability densities, transition matrices
and modelling. The second section presents the data of four
swimming states. The application of this method using these
data are shown in a third section and the last one provides
discussions on thenew results supplied by this analysis using a
newmethodology applied on an old dataset and perspectives.

2. Symbolic dynamics of swimming state sequences

In order to conceptualize a complex behaviour, we assume
that the system is ergodic. Thus, time averages are the same
for all initial points. This corresponds to assume that time has
negligible effect on the probability of each swimming states.

2.1. Entropies and transition matrices

Symbolic dynamics is away to characterise the complexity
of a discrete time system, using a coding of its trajectory with
a finite sequence of symbols. We consider here a partition of λ
different symbols (or letters) A=(A1..Aλ), which can be called
an “alphabet”. Behaviour is codified as a sequence of
successive letters chosen among this alphabet. In the context
of symbolic dynamics, we can consider subsequences of
length n, called words of size n, or n-words. The index n here
refers to time: “n-words” are made up of a sequence of
successive symbols for n time steps: it is hence possible to
have consecutive identical symbols. When considering the
relative frequency of an ordered sequence (A1..An), we denote
its probability p(A1..An). The n-word variability is then
characterized using the entropy per block of length n (or n-
gram entropy):

Hn = −
X

p A1::Anð Þlogλp A1::Anð Þ ð1Þ

where the sum is performed for all words of length n. This
quantity is also called dynamical Shannon entropy for words of
length n (Shannon, 1951; Eckmann and Ruelle 1985; Ebeling
and Nicolis, 1991) and characterizes the repartition of n-words.
For Bernouilli sequences where every letter is chosen with the
same probability 1/λ and independently one from another,
each word has a probability of λ−n and there are λn words, so
that Hn=n, which is an upper bound. For n=1, H1=H
represents the classical Shannon entropy.

One considers also n-gram dynamic entropies, interpreted
as entropy excess associated with the addition of symbol to
the right of an n-word (Ebeling and Nicolis, 1991):

hn = Hn + 1 − Hn ð2Þ
This quantity is a measure of the uncertainty of predicting

the state one step in the future, provided the history of n

previous steps. If there is memory in the system, the dynamic
entropy hn decreases and predictability increases. For Ber-
nouilli sequences, we have hn=1 which is a maximal un-
certainty. This can be quantified estimating rn=1−hn

interpreted as the average predictability of the state following
the n previous steps (Ebeling, 1997).

The dynamics of the sequence of symbols X(t) can also be
characterized by the conditional probability Pij

(1):

P 1ð Þ
ij = Pr X t + 1ð Þ = Aj jX tð Þ = Ai

n o
ð3Þ

This is a 1-step transition, and expresses the transition
probability at the smallest scale, between time t and time

t+1. This way a transition matrix (non symmetrical) Π1=
(Pij(1)) can be defined. One can also generalize this definition
and consider a q-steps conditional probability Pij

(q):

P qð Þ
ij = Pr X t + qð Þ = Aj jX tð Þ = Ai

n o
ð4Þ

expressing the transition probability between time t and
time t+q. In case of the memory-less Markov process, we
can introduce all independent steps between t and t+q and
obtain (Nicolis, 1995):

Πq = Π1ð Þq ð5Þ

wherewe introducedΠq=(Pij(q)). Thememory of the symbol
sequence can then be characterized by checking if the
Markov relation (Eq. (5)) is verified.

2.2. Exit times and a simple dynamical model

Another quantity of interest for characterisation of the
dynamics is the exit time, also called residence time, in a state
Ai, denoted pi(t): this is the probability density of the time
spent in the state Ai. Considering the diagonal terms of the
transition probability matrix: for a Markov process we have
pii
(q)=(Pii(1))q according to Eq. (5), and hence we have for the

residence time pi(t) (Nicolis, 1995):

pi qð Þ = P 1ð Þ
ii

� �q
= e−q=Ti ð6Þ

with Ti=−1/logPii(1) which is the characteristic time of the
exponential decrease given by Eq. (6). TheMarkov hypothesis
corresponds to an exponential fall-off of exit times, and
whenever the fall-off of pi(t) is not exponential, one may infer
that there is some memory in the process generating the
symbol Ai. In case ofmemory, onemay build a singlemodel for
the symbolic dynamics using a Monte Carlo method (Schmitt
et al., 1998, 2006), with the assumption that successive
residence times in a state Ai and a state Aj≠Ai are
independent. The modelling follows an iterative procedure:
(i) start from an initial state Ai; (ii) choose a residence time in
state Ai as a random variable chosen according to the
probability density pi(t); (iii) choose the next state Aj

according to a given transition probability matrix Qij (i≠ j),
expressing the probability to go to state Aj when leaving the
state Ai:

Qij = Pr Aj follows Ai; i ≠ j
n o

ð7Þ

then the procedure start again in (i).
The general procedure to generate a dynamics of symbols

is a simple way, which has been used for weather regimes
(Nicolis et al., 1997), rainfall (Schmitt et al., 1998), copepod



Fig. 1. Evolution of the flow velocity (mm/s) during the end of the first calm period and the beginning of the first turbulent period. Stable calm condition (SC),
Transitional phase (T), Stable turbulent condition (ST).
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dynamics using 2 states (Schmitt et al., 2006) and ciliate
dynamics using 3 states (Vandromme et al., submitted for
publication). In the following, we apply this theoretical fra-
mework to Centropages hamatus swimming behaviour data
in a 4-state partition (λ=4).

3. The data

3.1. Experimental conditions

As an illustration of a four state behavioural dynamics we
revisit here some previously published and analyzed data on
the swimming behaviour of the copepod Centropages hamatus
(Hwang, 1991). Animals were collected in coastal surface
waters at Woods Hole (Massachusetts, USA) and were ac-
climation to condition at 18 °C for one day before the ex-
periments. An adult female copepod was tethered by fixing it
on dog hairs, following the method of Costello et al (1990)
and Hwang et al (1994), and placed in a vessel containing 5 l
of membrane filtered (0.22 μm) seawater and food, the alga:
Thalassiosira weissflogii at concentration of 100 cells per ml.
The study was conducted in a dark room and the swimming
behaviours were recorded using an infrared laser beam
(632 nm) to avoid effects of visible light on the behaviour of
the animal.

A mesh fixed on an electric motor produced vibrations and
created turbulent conditions. The Reynolds number is
estimated as Re=UL/ν=2690 with a mean velocity mea-
sured as U=1.74 cm/s, a vessel size of L=17 cm and a
kinematic viscosity at 10 °C of ν=1.1 10−6 m2s−1. The
experimental procedure was designed to assess the potential
influence of turbulence on copepod behaviour: after a period
of 30 min of acclimation, the copepod was subjected to a
regime of succession of four rounds of a sequence of calm and
turbulent periods of duration 25 min each. In order to study
only stable conditions, we considered below only the data
during the stationary phase (Fig. 1).

The total duration of the experiment is thus 200 min. Vi-
deos have been recordedusing a Panasonicww-1800 infrared-
sensitive camera (temporal resolution: 33 ms) and a Pana-
sonic NV-8500 video cassette recorder. Three-dimensional
trajectories have been extracted from these video recordings.
A QSI frame counter has also been used for sequential
numbering of frames. For more details on the description of
the experiments and the data see Hwang et al. (1994).

3.2. From videos to swimming states

The videos have been recorded with a suitable spatial
resolution, permitting the identification of activities from
appendix movement observations (Hwang, 1991; Hwang and
Strickler, 1994). Four different copepod activities have been
identified: Slow swimming, Fast swimming, Breaks and
Grooming, respectively identified in this study with the let-
ters S, F, B and G. Videotapes have been analyzed frame by
frame, assigning one of states for each frame. This partition of
the “phase” space into 4 symbols is justified on ecological
grounds: slow swimming activity is a foraging and feeding
period, a “cruise”. Fast swimming can be defined as escape
behaviour from disturbance: copepods use swimming with
their legs to jump and distinctly accelerate. In the field,
breaking is a slowly sinking behaviour: for tethered copepods
this state corresponds to no visible appendage movement.
During grooming behaviour, copepods clean their receptors or
their body using the first antennae (Cowles and Strickler,
1983; Costello et al., 1990).

A total of 360,000 of consecutive video frames has been
analysed (200 min at 30 frames per second (fps)). This cor-
responds to about 7000 different swimming sequences, about
1350 in calm and 5720 in turbulent environments.

4. Results

4.1. Probability densities and dynamic entropies

We first consider basic statistics for each state under
turbulent and non-turbulent conditions, in order to detect a
possible influence of turbulence. We must underline here the
fact that we assume the existence of probabilities for each
state and transitions between states, corresponding to
assume the existence of an invariant measure, and ergodicity
of the dynamical system. Table 1 gives the proportion of each



Table 1
Probability of the state p(Ai); mean, minimum, and maximum of residence
times is the corresponding state: for the turbulent period (a), the first calm
period (b), and the other calm periods (c).

S F B G

(a)
p(state) 0.88 0.01 0.08 0.03
mean±SD (s) 1.84±0.3 0.06±0.01 0.85±0.05 0.10±0.02
min (s) 0.07 0.03 0.03 0.03
max (s) 66.83 0.60 3.87 0.30

(b)
p(state) 0.47 10−3 0.53 3 10−3

mean±SD (s) 2.55±1.3 0.11±0.06 3.44±0.9 0.11±0.05
min (s) 0.13 0.03 0.03 0.07
max (s) 11.2 0.2 8.9 0.23

(c)
p(state) 0.78 10−3 0.22 3 10−3

mean±SD (s) 8.9±0.7 0.06±0.04 3.93±0.03 0.12±0.02
min (s) 0.07 0.03 0.10 0.07
max (s) 58.80 0.23 21.20 0.27

Table 2
Values of dynamical entropies H1, H2 and H3, and conditional entropies h1
and h2, estimated for all calm and all turbulent periods.

H1 H2 H3 h1 h2

Calm periods 0.40 0.42 0.44 0.025 0.024
Turbulent periods 0.33 0.42 0.52 0.097 0.093
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state, under turbulent and non-turbulent conditions. These
proportions are estimates of the theoretical probabilities
under the assumption of ergodicity of the system considered.
The first calm period was considered separately from the
other calm periods since it was observed that for the other
calm periods, the copepods have felt a stress during 25 min
indicating certain memory effects, corresponding to a “post-
turbulence” calm situation (see also Costello et al., 1990). This
is confirmed by the comparison of Table 1b and c, particularly
for the probabilities of S and B states (almost identical during
pre-turbulent period, quite different during post-turbulence
period). In the following, when performing statistics for the
“calm” period, we will only consider the post-turbulent calm
periods. During turbulent conditions, the S state is dominant
(0.88). It can be observed that in both cases, the states F and G
have very small probabilities. They are ecologically important
nevertheless, and there are enough data to estimate reliable
statistics associated for these states.

Table 1 also indicates the minimum, maximum and mean
residence times of each state. Interestingly, G and F residence
times are the same for turbulent and non-turbulent conditions.
This indicates that the behaviour of grooming or swimming
fast, is done during a short duration, which is the same at
turbulent or calm conditions. Moreover, the mean residence
times in B and S states are much smaller at turbulent than at
calm conditions: for the S state, it goes from 1.84 to 8.9 s from
turbulent to calm conditions, and for the B state from 0.85 to
almost 4 s. This indicates that frequent turbulent bursts
prevent the copepods from staying for long times in S or B
states.

Table 2 gives the dynamical entropies H1 to H3 for both
conditions. H1 is small in both cases, but smaller for turbulent
conditions. It increases faster under turbulent condition,
indicating that there is more variability in the symbolic
sequence dynamics under turbulent conditions. The entropy
excesses h1 and h2 are rather small, indicating a small
uncertainty in predicting next step in the process; it is smaller
for the calm periods, coming from the longer residence times in
the S and B states. These values are complemented by the
estimation of the 1-step transition probability matrix Π1=
(Pij(1)). The values estimated for turbulent and calm periods are
given below, for S, F, G and B states respectively:

ΠCalm
1 =

0:996 8 10−4 1:2 10−3 2 10−3

0:44 0:56 0 0
0:30 0 0:70 0
0:01 0 0 0:99

0
BB@

1
CCA

ΠTurb
1 =

0:98 5 10−3 0:01 5 10−3

0:51 0:48 5 10−3 5 10−3

0:33 0 0:67 0
0:04 10−3 0 0:96

0
BB@

1
CCA ð8Þ

These matrices must be read horizontally. For example, at
the calm condition, when being at time t in F state, there is a

probability of 0.56 to stay at time t+1 in F state, and a
probability of 0.44 to go to S state. Thus, the sumof all lines is 1,
whereas the sum of columns can be different from 1 and has
no simple interpretation. It is clear from these values that
some elements of the 1-step transition probability are much
larger than the others. At the 1-step level, it is much more
probable to stay in state S when being in this state, than to
leave it; the same applies for the state B. We do not detect any
clear differences in the turbulent and calm situations in these
matrices, which have the same structure. However, these 1-
step transition matrices are enough to characterize the
sequence dynamics only in the Markovian case. They can be
used to determine if the underlying dynamics of the symbolic
sequence is close to a Markov process. For this, we estimate
the q-step transition probability Πq=(Pij(q)). We quantify the
Markov property (Eq. (5)) by estimating the following in-
dicator function:

f qð Þ = j jΠq − Π1ð Þq j j
j jΠq j j

ð9Þ

where ||A||2=A:A=Trace{AtA} is the normwhich is chosen for
matrices. The function f(q) has no dimension; it quantifies the
normalized distance between Πq and Π1

q. When close to 0, it
indicates that the relative distance is small, whereas value
close or larger than 1, indicate a large distance. This indicator is
estimated for both the turbulent and calm periods. The result
is shown in Fig. 2. We see that in each case the distance grows
fast, and is very significant for q=3, clearly reflecting the non-
Markovian nature of the dynamics, at both calm and turbulent
conditions. There does not seem in this respect to be im-
portant differences between turbulent and calm condition.

4.2. A simple model for the symbolic dynamics based on exit
times and transition probabilities

We now discuss a simple model for symbolic dynamics
data generated in this study. We first consider the exit times
(or residence times) probability density functions (pdf) in



Fig. 2. Evolution of f(q), the normalized distance between Πq and Π1
q in function of the step level q, values under calm (– –) and turbulent condition (–).
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each state. This is shown in a log-log plot for turbulent and
calm periods in Fig. 3a–b, for respectively the B and S states
(The pdfs for the G and F states are noisier due to smaller
number of data values). Fig. 3a shows a very clear influence of
turbulence on the pdf in B state: the mode is found for much
smaller time values in the turbulent case; moreover, under
influence of turbulence, the pdf is much broader, with a heavy
tail for large values, whereas for calm periods, the pdf is quite
narrow. Fig. 3b represents the pdf in S state: there is also a
very clear difference between calm and turbulent conditions:
the pdf have a clearly different shape; in the Turbulent case, a
power-law behaviour can be fitted on almost the whole
accessible range, of the form:

pS tð Þ = At−μ ð10Þ

with A being a constant and the exponent estimated as
µ=1.73±0.05. Such power-law residence time has been found
for other types of animal behaviour experiments (Cole, 1995;
Viswanathan et al., 1996; Kafetzopoulos et al., 1997; Harnos
et al., 2000; Faure et al., 2003; Bartumeus et al., 2003) and was
previously reported for the copepod Cosmocalanus darwini
using a 2-states modelling (Schmitt et al., 2006). It seems
probable that such behaviour is universal in animal behaviour.

Then the model assumes here that the only other relevant
parameter are the probability transitions Qij (i≠ j) expres-
sing the probability to go to state Aj when leaving the state Ai

(Eq. (7)). The resultingmodel describes the dynamicswith the
knowledge of exit times probability densities for all states, and
the non-diagonal matrix Qij (not to be confused with the 1-
step transition matrices given in Eq. (8)): see Fig. 4 providing
the values of the different transition probabilities at turbulent
and calm periods. Copepod behavior is characterized by the
importance of slow swimming activity (Fig. 4b). Most of the
time, copepods come back systematically to slow swimming,
whatever the initial state: grooming (100%), fast swimming
(100%), and break (98%). Moreover, although the copepod
goes preferentially from slow swimming to break (69%),when
the initial state is slow swimming, it can change to all others
states also (grooming (29%) fast swimming (2%)). However,
our observations during the successive calmperiods reveal the
variability of the value of the transition probability from slow
swimming to grooming and the transition probability from
slow swimming to break (Table 3). During the successive calm
periods, the transition probability from slow swimming to
grooming increases while the transition probability from slow
swimming to break decreases. During turbulent conditions,
fast swimming becomes more important (Fig. 4a). In fact,
various transitions to fast swimming increase: the transition
probability from slow swimming and break to fast swimming
increases significantly (respectively 24% and 5%). The transi-
tion probability from slow swimming to grooming rises (56%)
also, with the diminution of the transition probability from
slow swimming to break (20%). The diagram (Fig. 4a) reveals
the appearance of the transition between fast swimming and
grooming, but it does not appear significant.

We must highlight here some limits to this modeling: our
main hypothesis here was to assume that successive
residence times are independent. We test this here with
two types of analysis. First, we consider two states denoted I
and J. We consider a sequence of states with I states followed
by J states, and write here TI the time spent in I state and Tj
the time spent in J state after leaving I state. We test the
independence hypothesis with the following indicator:

βIJ =
TITJ
TI TJ

ð10Þ

The indicators βIJ must be close to 1 in case of indepen-
dence of successive times. This was estimated for states for

which there were more than 100 realizations to perform the
statistics. Six indicators could be estimated for the turbulent
situation, and for the calm situation (Table 4). The indicator is
close to 1 only for indicators βSG and βGS in the turbulent
situation. In all other cases, the indicator is significantly far
from 1, indicating dependence between successive residence
times. This dependence is however limited since the indicator
is always between 0.70 to 1.34, and hence of order 1.



Fig. 3. Pdf of residence time (log/log) in B (a) and S (b) the second, the third, and the fourth calm periods (·····) and during the turbulent condition (–) andwith it
exponential fit (– –).
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We also consider the transition probabilities Qij estimated
for two different situations: long residence times in S state,
and short residence times in S state (“Long” means a
residence time between the mean value and the maximum,
and “Short” between the minimum and the mean value). In
case of independence of successive residence times, the
estimation of Qij should not be significantly modified
according to the “Short” and “Long” separation. Some
transition probabilities are not modified, whereas some are
changing when considering short or long times (Table 5).
More especially, regardless of the environment, when the
copepod spends long time in S state, the transition probability
to F state decreases and the transition probability to B state
increases. On the other hand, the transition probability from S
to G state increases in turbulent situation and decreases in
calm situation. These results emphasize the limits of the
independence hypothesis, indicating that a fully realistic
model should involve more complex transition rules. How-
ever, the approach of the present study must be taken only as
an approximation and a first step towards a complexification
of the symbolic dynamics modelling.

5. Discussion and conclusion

Let us first discuss our results compared to previously
published studiesusing the samedatabase.Hwang andStrickler
(1994) have considered the threshold for mechanoreception
triggering an escape response, and also considered the
changing effect of escape responses after several periodic
turbulent events. They have reported the minimum particle



Fig. 4. Means of transition probabilities (%) between each four states fast
swimming (F), slow swimming (S), break (B) and grooming (G) under the
four turbulent conditions (a) and the four calm conditions (b).

Table 4
The indicator βIJ estimated for different states, testing the independence of
successive residence times: it must be close to 1 in case of independence of
successive times.

βSB βBS βSG βGS βSF βFS

Calm 1.30 1.25 0.83 0.80 – –

Turbulent 1.15 1.34 1.05 1.03 0.75 0.70

Table 5
Comparison of the transition probabilities Qij from state Si to state Aj: two
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speed inducinganescape response (0.84mms−1).Hwanget al.
(1994) have studied the evolution of the number of escapes in
each turbulence sequence. Hwang (1991) has described in
details the tethering technique and has discussed the evolution
of the percentage of S, B, F,G events in each turbulent sequence.

We may also compare our results to other studies such as
Costello et al. (1990), who considered behaviour response of the
same copepod species to turbulence. This paper also considered a
four states modeling (S, B, F, G) and displayed transition
probabilities between states and the influence of turbulence on
the latter. They also considered the total probability in each state;
but they did not show residence times pdf, nor did they test the
Markovian modeling on symbolic dynamics hypotheses.

Our approach using the methodology presented above is
thus seems as a continuation of previous analyses, providing
more detailed and complex analyses, inside a more solid
theoretical framework.

5.1. Methodology and model

We have proposed in this paper a general methodology to
characterize animal behaviour when behavioural activity is
Table 3
Transition probabilities QSB and QSG from state S to respectively state B and
state G, estimated successively for all calm periods.

QSB QSG

calm 1 0.85 0.14
calm 2 0.84 0.16
calm 3 0.55 0.42
calm 4 0.53 0.44

values are given in each entry: above is the transition probabilities estimated
for long residence times in state Si (long time) and below those estimated for
small values of the residence times (short time).

(a)

Qij F B G

S Turb Long time 0.16 0.22 0.62
Short time 0.28 0.19 0.53

Calm Long time 10−3 0.79 0.21
Short time 0.03 0.63 0.34

This is done for turbulent conditions (turb) and for calm conditions (calm).
estimated using a sequence of symbols associated to states of
activities. We have introduced several statistical and dyna-
mical quantities borrowed from the fields of chaos studies,
statistical physics and information theory, such as dynamic
entropies, transition probabilities, residence times… In this
framework, we have analyzed copepod behaviour data
previously reported by one of our co-authors, and character-
ized using a four letters alphabet associated to four different
behaviour states. This data base has been recorded in two
different conditions, calm and turbulent, and we used here
our methodology as a tool to compare and interpret the two
situations.

We have thus shown that in both situations, a Markovian
modeling was not adequate for time steps longer than four
frames, as indicated in Fig. 2. We have proposed to model the
dynamics using a symbolic dynamics model possessing four
states, residence times pdf in each state and transition
probabilities to choose the next state after leaving the previous
one. Thepossible limits of suchmodelinghave been testedhere.
The main hypothesis is the independence of successive
residence times. Considering, the correlation between succes-
sive times, we have found that indeed our modeling is an
idealization, since there was a detectable dependence between
successive residence times. This was confirmed by the study of
the transitionprobabilities for long and short residence times in
S state, since some slight dependence was visible.

With these limits in mind, the four states symbolic
dynamics which is proposed here can be used as a methodo-
logical tool to assess the influence of turbulence on copepods
behaviour.

5.2. Characterization of Centropages hamatus behaviour

The Centropages hamatus behaviour is characterized by
the great importance of the slow swimming state, whatever
the environment. Copepods go back generally to slow swim-
ming activity after or before another activity. This state is
known to be the foraging behaviour, it means that the
copepods explore their environment during the latter and can
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detect a potential prey. This activity permits to increase prey
encounter probability and creates feeding currents. Thus slow
swimming can be defined as the key state, playing an
important role in the fitness of this organism. The break
state is also a significant period in the copepod behaviour. Its
relative importance could be explained by two arguments:
first, during break state, copepod is in stationary suspension
and it permits to capture non-motile preys (algae), or to sink
and investigate deeper water. Secondly, behaviour is also
ruled by the necessity of mating, foraging and by the energy
cost. A large break state proportion can considerably decrease
the latter. So, the utilization of gravity may be a good strategy
to increase foraging efficiency, using less energetic reserve.
Lastly, fast swimming and grooming are costly behaviour
so these states are less observed, despite their ecological
importance. Moreover, a longer residence time in slow
swimming (with an inefficiency foraging behaviour)
increases the consumption in term of energy, although the
latter is a low cost activity. So, when copepod spends a large
time in slow swimming, the transitions to a more expensive
state, such as fast swimming and grooming, decrease and the
changes to break moments rise in frequency.

5.3. Effect of turbulent and non turbulent environments

It was not possible to reproduce in laboratory real
turbulence conditions observed in-situ and see the precise
effect of turbulence variations in intensity or in duration. But in
order to approach realistic situations where the intensity of
turbulence can be variable in time at a given location, our
experiment has focused on the consequences of alternation of
hydro dynamically stable but very different environments. This
way we could observe the reaction of Centropages hamatus
facing a brutal variation of the turbulence and thereby consider
the effect of turbulence transition on copepods behavioural
states. The introduction of turbulence increased the complexity
of copepod behaviour since the entropy increased with
turbulent stress. Entropies increase faster under turbulent
conditions, indicating more variability, confirmed by the va-
lues of h1 and h2 showing less predictability under turbulent
conditions. We observe that turbulence provokes an important
intensification of all other activities whereas breaks probability
decreases: from calm to turbulent conditions we find that p(B)
decreases from 0.22 to 0.08 while p(S) increases from 0.78
to 0.88. This indicates that in calm situation, copepods prefer
the B state. Furthermore, the mean residence time in B state
decreases from about 4 s in calm situation to less than 1 s in
turbulent situation. On the contrary, F and G states duration are
not affected by turbulence.

Escape behaviour is a strategy to avoid predation, a pheno-
menon often observed in plankton species such as copepods
(Browman et al., 1989; Viitasalo et al.,1998, 2001; Trager et al.,
2004…). Approaching and capturing movements of predators
(such as fish suction (Coughlin and Strickler, 1990; Buskey,
1994)) create a water motion. The latter is a signal for the
copepods that provokes the escape behaviour. Hwang and
Strickler (1994) established that the minimum water dis-
turbance which triggered escape is 0.84 mm s−1. During this
experiment, turbulent conditions create current velocities
greatly above this threshold. The copepodsmight perceive the
turbulence stress as a predator attack which would explain
that the duration in B and S states are generally shorter. At the
same time, during turbulent conditions, grooming activity
increases too. Leaving S state, in calm situation copepods go to
G state less often (29%) than in turbulent situation (56%). This
may be explained by increasing damage to receptors under
turbulent situation. Indeed, under a variable and stressful
environment, the copepods need to keep a great sensitivity
guided by the necessity of maximize feeding opportunities
and minimizing predation. This sensitivity is maintained by
the regular cleaning of the mechanoreceptors and chemor-
eceptors placed on the first antennae (Yen et al., 1992).
Additionally, the transition to grooming is broader when the
initial state is long. This result confirms that grooming is a
crucial activity, in order to maintain a great sensitivity, even
more in a stressful environment. We also obtained very in-
teresting and new results concerning residence times pdf
especially for S and B states. These showedmarkedly different
shapes between turbulent and calm situations: for B state, a
shift is visible on mode values of the pdf. For S state, a very
different shape was noticed, with a power-law pdf for the S
state in turbulent conditions.

These results cannot directly be generalized to the real
world turbulence situation, but they provide a methodological
or theoretical ground for future studies involvingmore complex
turbulent situations, either in the laboratory or in situ.

Finally, we may conclude here that the general methodol-
ogy which was proposed in this paper uses an interesting
framework in the field of symbolic dynamics, and produces
some results that can be interpreted on ecological grounds.
We have used this approach to consider the influence of
turbulence on copepod behaviour; this could also be general-
ized as a methodology to consider the influence of external
factors on animal behaviour. It may hence provide some hints
to improve the validity of ecosystem models, e.g. by the
introduction of general laws expressing the coupling between
turbulence predicted by dynamical models, and zooplankton
dynamics and behaviour.
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