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Abstract

Large temporal and spatial data series are increasingly available and easy to produce. This paper uses Zipf analysis to evaluate
serial data sets from the HOTS, BATS, EquaPac and high-resolution vertical profiles of FluoroMAP. Zipf analysis produced Zipf
exponents from best-fit lines that permitted comparison among data sets. It allows comparison of one-dimensional series despite
differences in scale and missing data. Zipf exponents ranged from 0.043 to 0.83. Serial data with sampling intervals of milliseconds
and months showed exponents that ranged around 0.3. To the extent that Zipf exponents measure structure and variation, the
indication is that structure of distributions is similar over millimeters and hundreds of kilometers. Zipf analysis provides a means to
quantify similarities and differences, and suggests that variation is linked across many length scales for phytoplankton.
© 2007 Published by Elsevier B.V.
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1. Introduction

The production of large amounts of data in marine
ecology dates back to the Challenger expedition volumes.
However, only relatively recently have those data accu-
mulated rapidly enough to be common and pose some
challenge to analysis and meaningful interpretation. For
phytoplankton this began with fluorometry data during
the early 1970s (e.g. Platt, 1972) and later satellite data,
beginning with the coastal zone color scanner (Feldman
et al., 1984). The buildup of extensive fluorometry and
chlorophyll data sets continues todaywith projects such as
the Hawaiian Ocean Time Series (HOTS) and Bermuda
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Atlantic Time Series (BATS) not only accumulating large
data sets, but also making them available on the internet.
In these cases there are a large number of scientists and
technicians involved in the data stream. Their contribu-
tions range from hardware and software design, e.g.
smoothing filters, through the physical process of sam-
pling to analysis and writing. This prevents an individual
from drowning in data preparation, reduction, analysis
and interpretation by sharing the data analysis.

The decreasing price of electronic data gathering
devices and the increasing power of personal computers
are increasingly enabling individuals to rapidly gather
data sets containing tens of thousands to tens of millions
of pieces of information. In addition, to the pervasive
availability of satellite data, fluorometers and other rapid
sampling or measuring devices now permit rapid data
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accumulation. Fluorometry series data have been
invaluable in assessing the response to iron limitation
(Behrenfield et al., 1996), finding structure associated
with fronts and ocean biomass structure (Platt, 1972;
Strutton et al., 1996; Strutton et al., 1997a,b; Chavez
et al., 1999), and getting various glimpses at microscale
phytoplankton distributions (Mitchell and Fuhrman,
1989; Cowles et al., 1993; Cowles and Desiderio, 1998;
Franks and Jaffe, 2001). Demand for analysis of spatial
series is also growing in nutrient analysis, benthic
microbe distributions and with optical plankton counters
(Currie et al., 1998; Seuront et al., 2002; Seuront and
Spilmont, 2002).

The accumulation of fluorescence data, in particular,
is likely to accelerate as collecting devices become more
rapid and more widely available due the advent of high-
frequency profilers (Wolk et al., 2002), rapidly proces-
sing the data to discern whether there are features of
interest, will be necessary for accurate and timely
interpretation. There already exists standard software
that rapidly provides data analysis, such as power
spectra and variogram analyses. However, most of these
procedures implicitly assume a Gaussian distribution
(Chatfield, 1989). This assumption is seldom tested or
met. Additionally, these data often need processing (e.g.
despiking and detrending) prior to the analysis, and
exactly how the data is handled in these processes
requires careful consideration (Chatfield, 1989). Often
data sets are non-stationary and have variable sampling
intervals. The presence of variable sampling interval, in
particular, often makes a data set unsuitable for these
methods and requires further processing (e.g. interpo-
lation) and interpretation.

Near, real-time analysis may be particularly impor-
tant in research of microscale processes, where ‘on the
spot’ sampling scale decisions might need to be made to
help unite information on the scale at which phyto-
plankton interact with the scale at which biological
oceanographers usually make measurements on plank-
ton. Attempts in this area have been made by Seymour
et al. (2000), Franks and Jaffe (2001) and Waters and
Mitchell (2002), as well as others before that. The
results of these studies were deficient in sample size,
resolution or sampler design. With the advent of high-
resolution fluorometers that can take approximately
1 million of measurements per hour (Wolk et al., 2002),
the problem of under sampling a distribution switches to
one of being overwhelmed with data by beginning to
representatively sample at appropriate scales.

The focus of this paper is the initial analysis of large
fluorescence time and spatial series. Specifically, the
interest is in the rapid assessment of the extent to which
fluorescence series contain meaningful information that
is worth spending time on. Implicit in this approach are
two features, the ability to rapidly process an entire data
set and the understanding to make equally rapid and
reliable interpretation of the data. This also implies that
incomplete or flawed data can be discarded. Such luxury
is a bonus of electronic data collection and allows
improved data quality by moving away from the concept
that all data must be used and is useful, no matter how
much time, interpolation, extrapolation, transformation
and post-hoc assumption must be done. Even if data
cannot be discarded, what is still needed is a clear un-
derstanding of the quality of the data.

Here, we use the Zipf analysis presented in Seuront
and Mitchell (companion paper 1) on a wide range of
fluorescence and chlorophyll time and spatial series.
Most of the data sets are comparatively small and taken
at the common oceanographic intervals of meters and
kilometers. Zipf analysis is used on these data because
they are familiar and a useful standard against which to
compare high-resolution sample sets where the mea-
surement rate is roughly 2 million points per hour. Zipf
analysis rapidly shows and quantifies hidden structure in
most data. These results are useful in demonstrating the
utility of Zipf analysis and in furthering our understand-
ing of phytoplankton distributions in the sea, particu-
larly at the microscale. To achieve this, data series are
presented from large to small scale. Each example was
chosen to reflect a particular area or problem in the
analysis of phytoplankton distributions. The analysis
provides valuable insight into the investigated data sets,
in particular, it shows, at least for the data analysed that
there is strong heterogeneity at the millimeter to
centimeter scale, in contrast to what can be inferred
from theoretical work (Siegel, 1998).

2. Materials and methods

2.1. Zipf analysis of time series: years to seconds

The data examined consisted of vertical profiles from
the BATS (Bermuda Atlantic Time Series), vertical and
horizontal profiles from the HOTS (Hawaiian Ocean
Time Series) programs, vertical and horizontal profiles
from the Cooperative Survey of the Pacific Equatorial
Zone (EquaPac) and, at the microscale, vertical profiles
from a FluoroMAP (Alec Electronics) fluorescence
profiler in Sagami Bay, Japan, 5 km from the coast. The
BATS and HOTS data were obtained from internet
archives at http://www.bbsr.edu/cintoo/bats/bats.html
and http://hahana.soest.hawaii.edu/hot/hot_jgofs.html,
respectively. The EquaPac data are at www.crseo.ucsb.

http://www.bbsr.edu/cintoo/bats/bats.html
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http://www.crseo.ucsb.edu/seawifs/8D_global/SWxtrct_0N95W.txt
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edu/seawifs/8D_global/SWxtrct_0N95W.txt, 10N95W.
txt, 10S95W.txt, 12N95W.txt, 20S85W.txt, 2N95W.txt,
2S95W.txt, 3.5N95W.txt, 5N95W.txt, 5S95W.txt,
8N95W.txt and 8S95W.txt. The EquaPac data is a
multistation chlorophyll a transect taken across the
equator as illustrated in Fig. 5. The BATS profiles
consisted of CTD fluorometer measurements averaged
to a sampling interval of 20 cm and taken according to
Knap et al. (1994). The BATS profiles were from 1988
to 2000. The HOTS data are chlorophyll measurements
from bottle samples taken at approximately 5, 25, 50,
75, 100, 125, 150, 175 and 200m. Since a 9-point
vertical profile was insufficient for our purposes here, all
profiles from October 1988 through December 2000
were used. Using all of the data produced 9 depth-
specific time series of approximately 400 data points
each.

FluoroMAP is a 60 cm long free-falling cylinder that
measures fluorescence and pressure. The sampling rate
was 512 Hz. The nominal falling speed was around
10 cm/s. The excitation beam was a blue diode laser
(Nichia electronics, Japan) 1 mm in diameter from
baseline to baseline. Ten-micrometer resolution mea-
surements of the beam showed about 75% of the
Fig. 1. Samples of the Hawaiian Ocean Time Series showing the
maximum (A) and minimum (B) variation patterns.

Fig. 2. Zipf plot of the time series from Fig. 1. A and B are plotted on a
linear scale. Note that the chlorophyll range for A is 0.4 μg l−1 while
the range for B is 0.2 μg l−1. The constant interval between each
stepped groupings of points is the measurement resolution, i.e. the
smallest interval the machine can detect.
intensity was confined to an inner 0.4 mm core. The
sensor window had a 5 mm radius, but lost sensitivity in
the outer 1 mm.
Fig. 3. The mean chlorophyll profile for the Hawaiian Ocean Time
Series and Zipf α exponents plotted to show their inverse relation. The
Zipf α exponents are obtained by ordering all of the time series values
at a given depth. The solid line indicates the mean chlorophyll a
concentration (μg l−1). The dashed line is the Zipf power law exponent
α. The error bars are 95% confidence intervals. The chlorophyll axis is
a log scale. The depth and exponent axes are linear scales.

http://www.crseo.ucsb.edu/seawifs/8D_global/SWxtrct_0N95W.txt


Fig. 5. Transequatorial maximum chlorophyll values (grey line), Zipf
exponents (black line) and the ratio between maximum and minimum
chlorophyll values (right axis, dashed line). The maximum chlorophyll
values are plotted for comparison, rather than the means, because the
numerous and unequal number of zeros at each station produces small
values showing no pattern. For clarity, the chlorophyll values are
normalised such that the maximum value of 4.78 μg l−1 at 10° N is 1.
Vertical axes are plotted on a log scale.
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BATS, HOTS and EquaPac data were used as they
appeared on the websites. FluoroMAP profiles were
taken by hand releasing FluoroMAP over the side of the
RV Tansei Maru in Sagami Bay, Japan. A data cable was
played out after it for use as a recovery tether. The tether
was left loose so that FluoroMAP fell under its own
mass until recovery, usually at about 15 m.

2.2. Zipf analysis of one-dimensional patterns

Following Seuront and Mitchell (companion paper 1),
chlorophyll a concentration (μg l− 1) and in vivo
fluorescence will all be referred to as the variable Xr.
The rank-size behavior of the variable Xr, the variable
value at a given rank, will thus be expressed as a power
law behavior:

Xr~r−a ð1Þ
where r is the rank of the variableXr. The Zipf exponent α
is subsequently estimated as the slope of the best linear
Fig. 4. EquaPac time series showing extremes in chlorophyll variation
at specific latitudes. The Zipf analysis and best fit, power law
regressions are shown in Fig. 6. The series were chosen because of
their different ranges and numerous zero values.
regression of Xr vs. r in a log–log plot. However, because
Zipf plots do not necessarily exhibit a power law behavior
over the whole range of available values of r (Seuront and
Mitchell, companion paper 1; their Fig. 14), an objective
criterion is needed for deciding upon an appropriate range
Fig. 6. Rank ordering of time series from Fig. 4. The best line fits are
y=5.33x−0.61, r2=0.96 (A) and y=2.05x−0.46, r2=0.99 (B). Error bars
are standard deviations.



Fig. 7. Comparison of the Zipf exponents for chlorophyll data at each
latitude (solid line) to the Zipf exponents for the standard deviation
(dashed line) of the chlorophyll at each latitude. Zipf exponents for the
standard deviation are consistently closer to −1 than for the
chlorophyll values themselves. The data set at each latitude ranged
from 149 to 210 data points. All data sets were terminated at 100 data
points to calculate the exponent to avoid over sampling bias (Seuront
and Mitchell, companion paper 1).

Fig. 8. A BATS vertical profile with a chlorophyll maximum (A)
showing a power law best fit for Zipf analysis (B and C). The inset
shows a close-up of a 30 m section of the chlorophyll profile. Rank
ordering of the profile shows a marked transition in the slope (B). The
arrow indicates the break. Replotting of the data so that both segments
start at rank 1 (C) shows the higher points in the chlorophyll maximum
best fit a power law (y=0.71x−0.42, r2=0.94), whereas the points
below the chlorophyll maximum best fit a linear function (y=
−2×10−5x, r2=0.95). The lines in C are the best fits. The grey points
at the end of the bottom line in C show the beginning of the sharp drop
from over sampling. These and subsequent grey points were not used
in calculating the best fit. This Figure should be compared with Fig. 9,
where the best fit for the shallow, high chlorophyll is linear and the best
fit for the deep, low chlorophyll values is a power function.
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of r to include in the regressions. We used the values of r
which maximized the coefficient of determination (r2)
and minimised the total sum of the squared residuals for
the regression (Seuront and Lagadeuc, 1997; Seuront
et al., 2004). None of the data was binned.

3. Results

The chlorophyll a values for the HOTS data ranged
from 0.01 to 0.5 μg l−1. Depth-specific time series
showed a variety of patterns. Fig. 1 shows the two
extreme patterns observed among all of the time series,
corresponding to the best and worst power law fits to the
data after ranking, respectively. The intermittent behav-
ior (i.e. a few dense patches over a wide range of low
density values) is fully compatible with a power law
behavior (Fig. 2A). In contrast, the regular, symmetric
fluctuations suggest a uniform distribution (Fig. 1B) and
then a linear Zipf behavior (Fig. 2B). More generally, for
all the depths investigated, the power law fits
(r2∈ ⌈0.71–0.97⌉) were significantly higher ( pb0.01)
than the linear ones (r2∈ ⌈0.43–0.87⌉). The best fits
were used to extract the α exponents of the power law
for each depth. The relationship between the Zipf
exponent α and chlorophyll concentration increased
from 0 to 100 m, but was always less than 0.3. Below the
chlorophyll maximum, α rose to 0.67 as the chlorophyll
a values fell (Fig. 3).

The mean chlorophyll values at each site for the
EquaPac transect data ranged from 0.01 to 5 μg l−1, a
factor of 10 higher than the HOTS data for the upper
limit. By using repeated measurements from the same
station, site-specific time series were generated. These
showed a variety of patterns, ranging from intermittent
(Fig. 4A) to more uniform (Fig. 4B) as determined by
the best and worst power law fits to the data after
ranking. In contrast, the data was also looked at as a
transequatorial transect of biomass and Zipf exponents
(Fig. 5). The r2 values for Fig. 5 were between 0.95 and
0.99. All r2 values were significant at pb0.01. The α



Fig. 9. A BATS vertical profile with a chlorophyll maximum (A)
showing a linear best fit for Zipf analysis (B and C). The inset shows a
close-up of a 30 m section of the chlorophyll profile. The inset scale is
the same as the inset in Fig. 8A for ease of comparison. Rank ordering
of the profile shows a marked transition in the slope (B). The y-axis is a
linear scale to highlight the difference between the two sections of the
data (cf. Fig. 8B). The small grey dots are transition points that fall on
neither line. The squares and triangles, again emphasize the two
different slopes in the data. Replotting of the data so that both segments
start at rank 1 (C) shows the higher points in the chlorophyll maximum
best fit a linear function (y=−7×10−4x+0.2, r2=0.97), whereas the
points below the chlorophyll maximum best fit a power law
(y=8.3×10−2x−0.074, r2=0.93). In contrast to Fig. 8, this figure
shows the power law fit in the chlorophyll values below the maximum.

Fig. 10. The value of the Zipf exponents α, shown as a function of the
fraction of the data where the best fit was a power law.

Fig. 11. A FluoroMAP profile shown at 3 scales, 10 m (A), 25 cm
(B) and 20 cm (C). Each point represents one measurement. Note that
for A and B, fluorescence is plotted on a log scale and spans more than
2 orders of magnitude.
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exponents showed variation across the transect that
ranged from 0.17 to 0.86. At each site, the mean
chlorophyll value was an average of 6.9 replicates
(replicate σ=2.7, number of replicated stations=1859).
This replication allowed error bars to be plotted for each
Zipf point. Representative graphs are shown in Fig. 6.
The error estimates, standard deviations, of these means
also have Zipf distributions. The α exponents from Zipf
of the standard deviations closely followed that of the α
exponents for the chlorophyll a values (Fig. 7).
For BATS, fluorescence profiles showed classical
chlorophyll maxima and low-level variability below the
maxima (Figs. 8A and 9A). Ranking the data showed
discrete breaks between the maxima and the deeper
fluorescence values (Figs. 8B and 9B). The fluorescence
maxima and submaxima fluorescence showed best fits
that were either linear or power law (Figs. 8C and 9C). A



Fig. 12. Rank ordering of FluoroMAP profiles. The data in Fig. 11 is
plotted in A as 3 sets of points. The top and bottom sets are linear best
fits (y=1.9x+197, r2=0.88 and y=−9×10−4x+14.41). The middle
set is a power law best fit (y=80.8x−0.37, r2=0.99). The Zipf analysis
for a second FluoroMAP profile (not shown) at the same location
5 min later is shown in B. The linear fit portions are in grey. The white
line fits a power law (y=272x−0.38, r2=0.98).

Fig. 13. A FluoroMAP time series at 15 m, where the variation in
fluorescence spans 3.5 orders of magnitude. The 30,000 points in the
time series were taken over 59 s (A). A rank ordering of the data (B).
The distribution has a break and flattens from ranks 1 to 10 and so line
fitting is best done on replotted data. Replotting of the 4 subsections
(C). The best fits from top to bottom of the graph are power law
(y=194x−0.046, r2=0.97), power law (y=336x−0.44, r2=0.95), power
law (y=101x− 0.25, r2 = 0.96) and linear (y=−7×10− 4x+9.71,
r2=0.94).
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power law was the best fit for submaxima fluorescence
32 out of 35 times, with two ties and one linear best fit.
The power law α exponents ranged from 0.043 to 0.105.
The 32 data sets ranged in size from 88 to 2037 values
per set and the best-fit α exponent occurred over a
fraction of the total data set that ranged from 0.07 to
0.61. To determine the extent to which the size of the
Zipf α exponent was a function of how much of the data
set the best-fit α exponent included, Fig. 10 plots α
exponent size against the fractional length of the total
data set that gave the best fit.

The FluoroMAP vertical profiles showed similar
trends to the BATS submaxima profiles, but with the
differences that measurements had a 0.7 mm sampling
interval (0.708±0.140 mm; x¯±SD, n=20,000), rather
than a meter-scale sampling interval and with all profiles
having power laws as the best fit. Example profiles are
shown in Figs. 11 and 12. The salient features of the
profiles (Figs. 11A and 12A) are that they are composed
of 20,000 points and that fluorescence values change by
up to 1000 times over distances less than 10 cm. Despite
sub-centimeter to supra-meter changes in fluorescence
distributions (Fig. 11), ranking all values in each profile
still provided a single unbroken power law (Fig. 12B).
The small deviations at low ranks did not change the α
exponent or r2 values and there were no clear breaks in
the slope of the line (Fig. 12B), so the higher ranks were
not plotted separately as was done for the BATS data
(Figs. 8 and 9). Some FluoroMAP profiles produced
Zipf slopes with 4 sections, characteristically the highest
and lowest ranks showed a linear best fit, while
intermediate ranks showed two distinct α best fits
(Fig. 13B). The change in slope appears to be caused by
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the presence of sharp peaks in the fluorescence
distributions (Fig. 13A).

4. Discussion

4.1. From time series analysis to Zipf analysis

Time series sampling has been used to support or
reveal many of the basic paradigms of phytoplankton
ecology. The classical examples are vertical migration
of dinoflagellates and the seasonal changes in phyto-
plankton abundance and species composition (Veldhuis
et al., 1997; Kamykowski et al., 1998, 1999; Sin et al.,
2000). Similarly, time series have been used to follow
the development of blooms from upwelling and other
nutrient inputs (Aristegui et al., 1997; Malej et al.,
2003). Common to all of these uses is the detection of
episodic events. However, temporal and spatial series
are also used for detecting community structure and
characteristic time and length scales for both descriptive
and dynamical analysis (Platt, 1972; Sugihara and May,
1990; Strutton et al., 1997a,b; Seuront et al., 1999,
2002). Here, we combined the latter use with Zipf
analysis to reveal structure that is not otherwise apparent
from examination of the data. The series data examined
range up to 30,000 points.

4.2. Zipf and partial Zipf laws: towards a seascape
topology

Ranking time and spatial series erases the temporal
and spatial information implicit in the sampling order,
leaving just a distribution of magnitudes. The slope of
the rank indicates the distribution of the measured
values. Time series from HOTS provide examples of
how ranking of distributions vary (Figs. 1 and 2). Most
of the distributions shown here contained linear and
power law components. We claim that the information
lies in the relative number of values that contribute to
each component and the goodness of fit for each
component (Fig. 10). In particular, eliminating the
temporal and spatial relationship in the data permits
comparison of distributions sampled at different scales.
Measuring the variation in those distributions through
the Zipf slopes then reveals structure in the variation.
This is an improvement over standard measures of
variation, such as the standard deviation or the
confidence interval because there is the capacity to
dissect the signal into ranges where all values are
equally likely and ranges where values are unequally
likely based on best fit (Fig. 13B; Seuront and Mitchell,
companion paper 1). In particular, comparing the ranges
over which values have unequal likelihoods in different
samples indicates that there can be a comparable or
greater amount of distributional variation over a few
centimeters as compared to the variation over tens of
meters vertically or a few thousand kilometers horizon-
tally (Figs. 3, 7 and 11)). This quantitative comparison is
particularly useful when the data sets include intermit-
tent time series with missing values. These can give the
visual impression of being highly variable due to zero
values (Fig. 4).

Examining all of the series, from the multiple year
BATS series to the high-resolution spatial series from
the FluoroMAP profiles, indicates that the fluorescence
and chlorophyll distributions are described by power
functions. These power functions can arise from rare,
multipoint peaks, such as in the BATS data, where the
first 100 points out of 3000 give a steep, straight slope
followed by a shallower, straighter slope (Fig. 8). More
commonly, as in the HOTS and FluoroMAP data, the
larger majority of the data fit a single power function
(Figs. 2, 12 and 13B), revealing order across all scales
and providing a way of quantifying large data sets.
Rapid analysis and quantification, along with being a
metric to compare disparate profiles and time series, are
the strengths of one-dimensional Zipf. Stepped data
distributions can produce multiple slopes in Zipf
analysis (Fig. 9). The slopes are useful intra time series
comparisons and help emphasize that there can be non-
random variation at multiple scales, even in regions
traditionally considered homogeneous, such as some
sub-chlorophyll maximum regions (Fig. 8, note 8A
inset). Achieving the best fit requires truncating the data
set (Seuront and Mitchell, companion paper 1). In
general, the larger the fraction of data explained by the
best fit, the larger the exponent (Fig. 10), which may be
a quantitative way of determining the extent to which
non-random variation permeates a time series.

4.3. Ubiquity of Zipf structure: a phenomenological
framework

In this paper, applying Zipf analysis shows that
power law distributions occur from sampling intervals
of kilometers down to millimeters. The α exponents for
these one-dimensional distributions were less than −1
and generally greater than −0.1. This is less than the −1
value found for the original Zipf's law (Zipf, 1949;
Seuront and Mitchell, companion paper 1) that is
interpreted to indicate aggregative behavior, such as
human populations in cities (Marsili and Zhang, 1998),
but that is probably not surprising given that plankton
are not fixed, nor, by definition able to control their
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position extensively. If anything, the unexpected result
is that there is a non-zero power law at all, particularly at
the millimeter sampling interval. One interpretation of
these non-zero slopes is that plankton do aggregate and
possibly control their distribution over these short
distances. Physical and biological aggregation processes
are well established over these distances. One spin-off of
the Zipf analysis here is that it may provide a means of
detecting aggregation from one-dimensional distribu-
tions. However, if this is going to be claimed, a close
look at errors associated with the method is necessary,
particularly at the smaller sampling intervals.

Error at the smallest sampling interval will be the
focus here, as the measuring device and sampling
interval are not commonly used. Fig. 11B and C shows a
strong autocorrelation observed over 5 to 10 sequential
points. This is probably the result of FluoroMAP
containing low pass filters on its circuit board that
smooths signal fluctuations (Alec Electronics, personal
communication). Further smoothing occurs because the
laser beam in FluoroMAP is oriented vertically as it
falls. This vertical orientation maximizes the amount of
time that phytoplankton will spend in the beam.
Sampling every 500 μm with a 1.2 mm long sampling
cylinder (Mitchell et al., unpublished data) means that a
given bit of water can remain in the beam for up to 25
sampling points. Given that some lateral advection is
likely to occur and the beam's radius of 1 mm, a given
cell is unlikely to traverse the entire long axis of the
sampling volume. The conclusion is that because of the
configuration of FluoroMAP variability is under
estimated due to smoothing and the highest resolution
of the instrument is lost.

In Zipf analysis, smoothing reduces the magnitude of
the extremes and so can decrease the α exponent. The
important ecological implications are that Zipf analysis
underestimates aggregation, that is it is a conservative
measure of aggregation, and that it applies as far down
as we are able to discern in the data presented for
FluoroMAP. Furthermore, there is no evidence of
homogenisation or decrease in variation at the smallest
scale. This is in conflict with Siegel's hypothesis on
plankton distributions (Siegel, 1998). Siegel proposed
continuously changing variation as a function of length
scale. Most notably there was a variation minimum
when the population size was small, on the order of
thousands of individuals. For phytoplankton, the
distance over which such a population size can be
found ranges from millimeters for coastal cyanobacteria
to many centimeters for large, eukaryotic phytoplankton
in oligotrophic waters. Although the presence of
variation has been quantified before, the classical
statistical techniques of variance, coefficient of varia-
tion, standard deviation and 95% confidence intervals
tend to deemphasize the extremes, which in some
circumstances are expected to be the most ecologically
relevant values. Zipf emphasizes these and allows them
to be quantified. This permits the comparison of real and
theoretical distributions and provides a mean of testing
field observations, laboratory and modelling experi-
ments against proposed mechanisms. Ultimately, this
should provide insight into the balance among behav-
ioral, chemical, and physical mechanisms that control
phytoplankton distributions. The influence of all three
processes, particularly behavior and chemistry, is most
direct and intuitive over distances relevant to individual
cells or small populations. However, as Young et al.
(2001) have shown, such small process can, in theory,
cascade upwards to the maximum dimension in the
system.

4.4. Zipf analysis as an index of patchiness

If Zipf analysis of phytoplankton emphasizes
extremes, it is worth exploring what those extremes
represent. Departures from background concentrations
that occur in a confined area are traditionally labelled as
patches (Okubo and Mitchell, 2001). Implicit in the term
patch is the assumption that the change in chlorophyll
concentration is positive. To accommodate the increas-
ing accuracy of measurements and our developing view
of the ocean environment, the terms ‘hotspot’ and
‘coldspot’ have been introduced to discriminate between
volumes of increased biomass and volumes of decreased
biomass relative to background (Azam, 1998). Zipf
analysis, by visually emphasizing the hot and cold spots
is effectively highlighting patchiness.

The classic use of Zipf for city aggregations (Marsili
and Zhang, 1998), business size (Axtell, 2001) as well as
standard plankton patch theory assumes a background of
zero (Okubo andMitchell, 2001). Here, however, there is
an average background concentration and the fluctua-
tions can be positive (local clusters from aggregation,
swarming, particle disintegration) or negative (local
grazing, viral lysis, particle scavenging). While Zipf
analysis implicitly emphasizes hotspots responsible for
the observed power law distributions and that has been
the focus here, in the future it may be worth exploring
Zipf as a descriptor and quantifier of cold spots.

No matter the direction of the departure from
background, it is important to keep in mind that the
process of rank ordering in Zipf analysis does not
necessarily erase all spatial information. Particularly
where power function fits are good and the α exponent
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is steep, the few points that contribute to this process
may all belong to the same extremely high patch. In this
hypothetical case, a single patch may bias the slope
upwards. This is what might be intuitively predicted.
However, the data presented here tends to show the
opposite, that the few high points form a shallower line
than the medium rank values (Figs. 6B, 8C, 12B, 13B).
This is explained in Seuront and Mitchell (companion
paper 1) and arises as a consequence of under sampling
of rare intense patches. In a qualitative sense, the em-
phasis Zipf places on the high values is balanced by the
under sampling of those rare values. Bias from the
extremes, in any case, can be excluded, as was done here
(Figs. 12 and 13; Seuront and Mitchell, companion
paper 1), by applying the best fit to the medium rank
values. This medium ranks still encompassed a large
fraction of the data sets (Figs. 12 and 13).

Zipf analysis of chlorophyll and fluorescence series
data permits comparison of data sets from disparate scales
and sampling intervals that contain missing values. The
comparison is quantitative, rapid and visual. From the
Zipf analysis of the series presented here it appears subtle
variation in phytoplankton distributions can be detected.
More importantly, it appears that variation across scales of
millimeters and seconds is similar to that found across
kilometers and years. Variations at the small scalesmay be
important to individual plankters.
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