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Abstract

Two data analysis methods, referred to as the Zipf and Pareto methods, initially introduced in economics and linguistics two
centuries ago and subsequently used in a wide range of fields (word frequency in languages and literature, human demographics,
finance, city formation, genomics and physics), are described and proposed here as a potential tool to classify space–time patterns
in marine ecology. The aim of this paper is, first, to present the theoretical bases of Zipf and Pareto laws, and to demonstrate that
they are strictly equivalent. In that way, we provide a one-to-one correspondence between their characteristic exponents and argue
that the choice of technique is a matter of convenience. Second, we argue that the appeal of this technique is that it is assumption-
free for the distribution of the data and regularity of sampling interval, as well as being extremely easy to implement. Finally, in
order to allow marine ecologists to identify and classify any structure in their data sets, we provide a step by step overview of the
characteristic shapes expected for Zipf's law for the cases of randomness, power law behavior, power law behavior contaminated
by internal and external noise, and competing power laws illustrated on the basis of typical ecological situations such as mixing
processes involving non-interacting and interacting species, phytoplankton growth processes and differential grazing by
zooplankton.
© 2007 Published by Elsevier B.V.
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1. Introduction

The investigation of the space–time structure of
marine plankton distributions set the priority of the
biological oceanographers in the early 20th century, so
that by about 1930 many investigators had shown that
planktonic organisms are neither uniformly nor randomly
distributed in the ocean over a wide range of spatial and
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temporal scales (Hardy, 1926; Hardy and Gunther, 1935;
Hardy, 1939). Despite an impressive body of literature on
the subject (e.g. Legendre and Demers, 1984; Mackas
et al., 1985; Daly and Smith, 1993), little is known about
the space–time structure of biological processes on
smaller scales (Seuront et al., 1999, 2002). Considering
the increasing awareness of the heterogeneous nature of
plankton distributions at decimeter and centimeter scales
(Seymour et al., 2000; Waters and Mitchell, 2002; Waters
et al., 2003) where the most ecologically relevant
processes of viral infection, nutrient uptake, cell division
and behavior occur, the ocean should be regarded as a
“seascape” (Seuront et al., 2004), and should subsequent-
ly be classified by analogy with landscape ecology (e.g.

mailto:laurent.seuront@flinders.edu.au
http://dx.doi.org/10.1016/j.jmarsys.2006.03.025


311L. Seuront, J.G. Mitchell / Journal of Marine Systems 69 (2008) 310–327
Kolasa and Pickett, 1991; Wickham and Norton, 1994;
Pickett and Cadenasso, 1995). Seascape ecology is in its
infancy, and we stress that two major interrelated
limitations hampering progress are associated to the
concomitant increases in the amount of data available and
the complexity of the related data analysis techniques.

Since the introduction of ship-board fluorometry
(Platt, 1972), satellite data, (Feldman et al., 1984) and,
more recently, microscale sensors providing up to 512
measurements per second (Mitchell, 2004; Wolk et al.,
2004), marine scientists have had to deal with an
ongoing data inundation that prevents an individual
from conducting data preparation, reduction, analysis
and interpretation. In addition, the more traditional,
widely used mathematical descriptors, such as the
variance-to-mean ratio (e.g. Taylor, 1961; Frontier,
1972; Downing et al., 1987) have been progressively
replaced by numerical techniques more difficult to
handle from the conceptual and practical points of view.
Thus, spectral analysis is now a standard method in time
series analysis since the seminal work of Platt in the
early seventies (e.g. Platt and Denman, 1975; Chatfield,
1996) and can be found in most statistical software and
programming books (e.g. Press et al., 1992). However,
exotic and recently developed techniques such as
nonlinear forecasting (Sugihara and May, 1990; Sugi-
hara et al., 1990; Strutton et al., 1996, 1997; Hsieh et al.,
2005), fractals (Seuront and Lagadeuc, 1997, 1998;
Waters and Mitchell, 2002; Waters et al., 2003),
multifractals (Pascual et al., 1995; Seuront et al.,
1996a,b, 1999; Lovejoy et al., 2001 Seuront et al.,
2002) and wavelets (Dremin et al., 2004; Fisher et al.,
2004) are seldom used in marine ecology despite an
increasing interest in describing patterns and processes
(e.g. Seuront and Strutton, 2004).

There are several potential reasons for the limited
applications of such techniques in marine ecology. First,
the crelated formalisms, mainly developed and used in
the fields of nonlinear dynamical systems and physical
sciences, are not straightforward to use and require a
large time investment to master. Second, unlike most of
the numerical techniques used to analyze spatial data
sets and time series, no software is commercially
available yet for nonlinear forecasting, fractals, and
multifractals. The wavelet packages now provided by
some software company or as freeware on the internet
require intensive training. Third, the numerical imple-
mentations of the related algorithms are challenging and
time consuming. In addition, the implicit assumption of
a Gaussian distribution is rarely tested and unless one is
fortunate, the data set usually requires some massaging
(e.g. despiking and detrending) before the analysis can
be performed. Exactly what happens in these processes
and which options to choose (e.g. Tukey–Hamming vs.
Bartlett's filtering method) requires careful consider-
ation. The intrinsic intermittent properties of most real
world patterns and processes are not compatible with the
Gaussian hypothesis, and thus with the related techni-
ques such as spectral analysis. In some instances, the
most extreme events are the most ecologically mean-
ingful (Seuront et al., 1999). Finally, some data sets are
inherently non-stationary, and when there are less than
100 samples or the sampling interval is variable the
above methods are unsuitable and require further
processing or interpretation, or altogether different
software programs and numerical techniques.

The methodological goals of this paper are to
introduce the Zipf and Pareto laws (Pareto, 1896; Zipf,
1949) for use in marine ecology because they do not
require any assumptions about the distribution of the
data set, the regularity of the sampling interval, and are
easy to implement. Their simplicity and ease appealed in
the pre-computer, pre-electronic calculator era. Since
that time the appeal has continued and the process has
been widely used in areas such as human demographics,
linguistic, genomic and physics, but surprisingly seldom
in marine ecology (see Table 1). This paper is the first in
a series treating the concept of seascape typology. The
papers that follow (Mitchell and Seuront, this issue;
Seuront et al., in press) illustrate the applicability of this
concept to one- and two-dimensional data sets. The
present paper provides a brief description of the
theoretical forms of Pareto and Zipf laws, and their
few applications to date in marine ecology. We next
demonstrate that Pareto and Zipf laws are strictly
equivalent, provide a one-to-one correspondence be-
tween their characteristic exponents, and argue that the
choice of a technique is rather a matter of convenience.
In order to allow marine ecologists to identify and
classify readily any structure in their data sets, we finally
provide a step by step overview of the characteristic
shapes (i.e. typology) expected for both laws in case of
(i) randomness, (ii) power law behavior, (iii) power law
behavior contaminated by internal and external noise,
and (iv) competing power laws.

2. Zipt and Pareto laws: theoretical background

2.1. The Zipf law

2.1.1. Background
The Zipf's law, named after the Harvard linguistic

professor G.K. Zipf (1902–1950), is the observation
that frequency of occurrence of any event, as a function



Table 1
Review of the systems studied using Pareto or Zipf laws in physical,
biological and ecological sciences

System Pareto/Zipf law Reference

X-ray intensity from solar flares Pareto 1
Ecosystem models dynamics Pareto 2
Sand pile dynamics Pareto 3
Volcanic acoustic emission Pareto 4
Earthquakes dynamics Pareto 5–6
Granular pile dynamics Pareto 7
Himalayan avalanches Pareto 8
Intensity of “starquakes” Pareto 9
Evolution model dynamics Pareto 10–11
Noncoding DNA sequences Zipf 12
Landscape formation Pareto 13–14
Sediment deposition in the ocean Pareto 15
Coding/noncoding DNA sequences Zipf 16
Word frequencies Zipf 17
Word frequencies Zipf 18
Formation of river networks Pareto 19–20
Rice pile dynamics Pareto 21
Noncoding DNA sequences Zipf 22
Percolation process Zipf 23
Linguistics Zipf 24
Tropical rainforests dynamics Pareto 25–27
City formation Zipf 28
Bird population dynamics Pareto 29
Aftershock series Pareto 30
City distribution Zipf 31
Discrete logistic systems Pareto 32
Procaryotic protein expression Zipf 33
Ion channels Pareto 34
Dynamics of atmospheric flows Pareto 35
US firm sizes Pareto 36
Distribution of city populations Pareto 37
Economics Pareto 38
Microphytobenthos 2D distribution Pareto 39
Marine species diversity Zipf 40–44
Size spectra in aquatic ecology Pareto 45
Phytoplankton distribution Zipf 46

1: McHardy and Czerny (1987); 2: Bak et al. (1989); 3: Held et al.
(1990); 4: Diodati et al. (1991); 5: Feder and Feder (1991); 6: Olami et
al. (1992); 7: Jaeger and Nagel (1992); 8: Noever (1993); 9: Garcia-
Pelayo and Morley (1993); 10: Bak and Sneppen (1993); 11: Paczuski
et al. (1995); 12: Mantegna et al. (1994); 13: Somfai et al. (1994); 14:
Somfai et al. (1995); 15: Rothman et al. (1994); 16: Mantegna et al.
(1995); 17: Kanter and Kessler (1995); 18: Cizrók et al. (1995); 19:
Rigon et al. (1994); 20: Rinaldo et al. (1996); 21: Frette et al. (1996);
22: Israeloff et al. (1995); 23: Watanabe (1996); 24: Perline (1996); 25:
Solé and Manrubia (1995a); 26: Solé and Manrubia (1995b); 27:
Manrubia and Solé (1996); 28: Makse et al. (1995); 29: Keitt and
Marquet (1996); 30: Correig et al. (1997); 31: Marsili and Zhang
(1998); 32: Biham et al. (1998); 33: Ramsden and Vohradsky (1998);
34: Mercik et al. (1999); 35: Joshi and Selvam (1999); 36: Axtell
(2001); 37: Malacarne et al. (2002); 38: Burda et al. (2002); 39:
Seuront and Spilmont (2002); 40: Margalef (1957); 41: Frontier and
Bour (1976); 42: Frontier (1977); 43: Frontier (1985); 44: Frontier
(1994); 45: Vidondo et al. (1997); 46: Mitchell (2004).
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of the rank r, when the rank is determined by the above
frequency of occurrence (i.e. from n events, the most
and less frequent ones will then have ranks r=1 and
r=1, respectively). More specifically, Zipf's law states
that the frequency fr of the rth largest occurrence of the
event is inversely proportional to its rank r as:

fr ¼ f1
r

ð1Þ

where f1 is the frequency of the most frequent event in
the distribution. This is typically referred to as the Zipf's
law. In log–log scales, the Zipfs' law gives a straight
line with slope of −1. As in many phenomena large
events are rare, but small ones quite common. For
example, there are few large earthquakes and ava-
lanches, but many small ones. There are a few words,
such as “the”, “of ” and “to” that occur very frequently,
but many which occur rarely, such as “Zipf ”. The
generalized Zipf's law is subsequently defined as:

fr ¼ f1
ra

ð2Þ

where the log–log plot can be linear with any slope α.
Going back to Zipf's original work, Eqs. (1) and (2)

can be more generally written as:

Xr~r−a ð3Þ
where Xr is the value taken by any random variable
relative to its rank r, and α=1 and α≠1 for the Zipf's
and the generalized Zipf's law, respectively. The
concept related to Xr is very general and refers without
distinction to frequency, length, surface, volume, mass
or concentration. Discrete processes such as linguistic or
genetic structures would nevertheless still require
frequency computations, and thus refer to Eqs. (1) and
(2). Alternatively, Eq. (3) can be thought as a more
practical alternative that can be directly applied to
continuous processes such as phytoplankton distribu-
tions (Mitchell, 2004).
2.1.2. Zipf's law in marine ecology
To our knowledge, Zipf's law has been only applied

to the description of species diversity (Margalef, 1957;
Frontier and Bour, 1976; Frontier, 1977, 1985, 1994),
and very recently to the distribution of vertical
phytoplankton distribution patterns (Mitchell, 2004).

More specifically, a modified version of the gener-
alized Zipf law (see Eq. (2); Mandelbrot, 1953):

fr ¼ f1ðr þ /Þ−a ð4Þ
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is useful for describing living communities in aquatic
and terrestrial ecosystems (Frontier, 1985, 1994).
Thus, in Eq. (4) fr must be thought as the frequency
of the rth species after ranking the species in
decreasing order of their frequency. The two para-
meters α and ϕ are characterizing the species
diversity and the evenness of a given community;
the diversity is given by H ¼ −

PN
i¼1 filog2 fi and the

evenness by R=H / log2 N, where fi is the relative
frequency of the species i and N the number of species.
The formulation of evenness shows that for the same
number of species, the diversity is highwhen species have
equivalent probability (high evenness), and lowwhen few
species are frequent and other are scarce (low evenness).
More specifically, a low value of αmeans a slow decrease
of the species abundance (i.e. a more even distribution of
individuals among species), and a high value of αmeans a
rapid decrease of species abundance (i.e. a more
heterogeneous distribution). The former and the latter
give less and more vertical rank-frequency distributions,
hence high and low evenness and diversity. On the other
hand, positive values of ϕ result in a greater evenness
among the most frequent species, then a higher diversity
index. Alternatively, a negative ϕ describes a community
marked by the dominance of a few (even one) species and
provides a low diversity index and a low evenness. In
summary, ϕ and α act upon the diversity and evenness
respectively through the niche diversity (i.e. the number
of alternatives in each type of previous environmental
condition) and through the predictability of ecosystem
(probability of the appearance of a species when its
environmental conditions are satisfied; Frontier, 1985).
Despite appealing and meaningful properties, Eq. (4) has
seldom been used in aquatic ecology. Margalef (1957)
was the first to fit the Mandelbrot distribution to
Mediterranean tintinnids with ϕ=8.4 and α=4.5, while
Frontier and Bour (1976) and Frontier (1977) estimated
α=1 and α=2 for chaetognaths and pteropods, respec-
tively. More recently, Mitchell (2004) demonstrated the
applicability of Zipf's law to ocean phytoplankton data
sets and subsequently applied Eq. (3) to low and high
resolution phytoplankton profiles. For instance, he
showed that the Zipf exponents α, estimated for low
resolution time series, range from α=0.20 to α=0.65 and
exhibit a significant increase below a critical chlorophyll
concentration. On the other hand, the exponents α
estimated for high resolution vertical profiles of fluores-
cence have been shown to fluctuate from 0.04 to 0.15.
Even if the ecological significance of such preliminary
results still needs further investigations (see Mitchell and
Seuront, this issue; Seuront et al., in press), it has
nevertheless been suggested that rank sizing could be
regarded as a first step in detecting structure and
encouraging a higher resolution examination of common
phytoplankton distributions.

2.2. The Pareto distribution

2.2.1. Background
The Pareto's law was originally introduced in

economics to describe the number of people whose
personal incomes exceed a given value (Pareto, 1896).
More generally, Pareto's law of any random variable X
is described in terms of the cumulative distribution
function (CDF):

P½XNx�~x−b ð5Þ
where x is a threshold value, and β is the slope of a log–
log plot of P[XNx] vs. x. Note that Eq. (5) can be
equivalently rewritten in terms of the probability density
function (PDF) as (Faloutsos et al., 1999):

P½X ¼ x�~x−g ð6Þ
where γ (γ=β+1) is the slope of a log–log plot of P
[XNx] vs. x.
2.2.2. The Pareto distribution in marine ecology
Pareto's law has been connected to the biomass size

spectrum (Vidondo et al., 1997) and has been used in a
slightly different framework related to Self-Organized
Criticality only once to characterizemicroscale patchiness
of microphytobenthos biomass (Seuront and Spilmont,
2002). Below a critical biomass, Seuront and Spil-
mont (2002) found a power law fit (r2=0.99) for micro-
phytobenthos patch concentration, with β=5.31, i.e.
P[X≥x]∝x−5.31. The ecological relevance of such a
finding will be explored thoroughly elsewhere (Mitchell
and Seuront, this issue; Seuront et al., in press).

2.3. From Zipf to Pareto laws

Zipf and Pareto laws have often been described as
separate power laws (e.g. Faloutsos et al., 1999), having
been compared in a paper demonstrating that Zipf's law
for the rank statistics is strictly equivalent to a power law
distribution of frequencies (Troll and Graben, 1998).
This comparison is unfortunately based on complicated
mathematical analyses and does not provide any link
between the Zipf and Pareto exponents α and β. Such a
comparison is nevertheless a crucial prerequisite step to
reconcile and compare results that could be obtained
using one of these two methods. We demonstrate in a
simple manner that Zipf and Pareto laws are strictly



Fig. 1. Linear and log–log Zipf plots of random processes with 100,
500, 1000, 50,000 and 10,000 data points (from left to right).
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equivalent, and subsequently provide a one-to-one
correspondence between the exponents α, β, and γ.

Eq. (3), shows that there are kr variables Xr (where k
is a constant) greater than or equal to r−α. This leads to
rewrite Eq. (5) as:

P½XNkr−a�~r ð7Þ

and

P½XNXr�~X −1=a
r ð8Þ

From Eqs. (3), (6) and (8), the relationship between the
exponents α, β and γ is given by:

a ¼ 1
b

g ¼ 1þ 1
a

8><
>:

ð9Þ

As a consequence, the Zipf and Pareto laws can be
regarded as equivalent. Specifically, the x-axis of the
Zipf law is conceptually identical to the y-axis of the
Pareto law (Eqs. (7) and (8)). The use of one or the other
distribution is simply a matter of convenience.

Because of the correspondence between Zipf and
Pareto distributions we will, from this point on refer to
Zipf's law. In particular, we provide an overview of the
characteristic shapes expected for Zipf's law in the cases
of (i) pure randomness, (ii) power law behavior, (iii)
power law behavior contaminated by internal and
external noise, and (iv) competing power laws. In
addition, we provide some practical keys for the marine
ecologists to avoid misinterpreting Zipf graphs and to
conduct a successful analysis.

3. Zipt and Pareto laws: the bridge to applications

3.1. Random processes

Fig. 1 shows the characteristic signatures of five
simulated random processes (i.e. white noise) with
100, 500, 1000, 5000 and 10,000 data points in linear
and logarithmic plots of Zipf distributions. In linear
plots (Fig. 1A), the Zipf law for random noise appears
as linear. On log–log plots (Fig. 1B), the simulated
random noises do not produce any power law behavior
as expected from Eq. (3), but instead a continuous roll
off from a horizontal line (i.e. α→0) to a vertical line
(i.e. α→∞). This is representative of the fact that no
value is more likely to be more common than any
other value.

The previous observations can be extended by
considering a specific class of random processes,
referred to as fractional Brownian motions (fBm;
Fig. 2A, B). Because fBm have the desirable property
of exhibiting antipersistent (i.e. an increase in the value
of the random variable is expected to be followed by a
decrease) and persistent (i.e. an increase in the value of
the random variable is expected to be followed by
another increase) behaviors (see e.g. Feller, 1971), they
explore a certain range of values before moving off
more or less gradually to another range of values.
These properties lead to a weaker version of
randomness in the Zipf framework (Fig. 2C–F). For
antipersistent fBm (Fig. 2A), the Zipf plots do not
exhibit any clear linear behavior (Fig. 2C), mainly



Fig. 2. Antipersistent (A) and persistent (B) fractional Brownian motions (fBm), shown together with their characteristic signatures in linear (C, E)
and log–log (D, F) plots. In antipersistent and persistent processes, an increase in the value of a random variable is expected to be followed by a
decrease and an increase, respectively. The resulting Zipf plot exhibit different deviations from randomness. The dashed lines in (B, D) indicate a
range of values explored by the fBM before moving off more or less gradually to another range of values. The same colors have been used for the
different fBm (A, B) and their related Zipf plots (C–F); the darker colors characterize the more antipersistent/persistent fBm.
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because of the upward and downward roll off observed
for low and high rank values, respectively. This is,
however, simply the result of an under sampling of the
highest and lowest values that can be regarded as an
implicit consequence of antipersistence. The distribu-
tions are characterized by a weak evenness for high
and low values, the distribution being dominated by a
few (ultimately one) high and low values. On the other
hand, for persistent fBm (Fig. 2B), the step shape of
the Zipf plot (Fig. 2D, F) reflects the property of
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persistent processes to visit one particular range of
values and then to change to another range sharply.
This step function becomes clearer when the fBm
exhibit more persistence (Fig. 2D, F). The main
difference between antipersistent and persistent Zipf
plots then relies in the quantity of values taken by
the fBm between transitions that will be more grad-
ual in the antipersistent case, and thus contain more
points than in the persistent case. Because the scale
expansion related to log–log plots may hide, at least
partially, the specific structural features of Zipf plots
when compared to noise (see Fig. 2C–F), we strongly
recommend the user to use both linear and loga-
rithmic plots. Finally, we stress that any step in Zipf
plots indicates structural discontinuities within the data
set.

3.2. Deterministic processes

Deterministic patterns and processes are well know
in time series analysis and referred to as monotonic
and periodic trends. Gradients and sine waves are
examples. Periodicity is common in marine ecology.
Here, we simulate an increased linear trend and a sine
wave trend. Both of them have been subsequently
contaminated by observational white noise (Fig. 3A, D).
The Zipf plots of the increasing trends exhibit the
characteristic signature of white noise (Fig. 3B, C). In
contrast, the Zipf plots of the sine waves exhibit
distinct features (Fig. 3E, F). The sine wave has the
characteristic Zipf shape of a pattern oversampled for
its higher and lower values, while the noisy sine wave
converges towards a random Zipf signature.

3.3. Pure power laws

Patterns and/or processes characterized by a power
law function (e.g. Eq. (3)) will appear as a straight line in
log–log plots (Fig. 4). However, this theoretical case is
rare in nature, and we will study hereafter a series of
situations where power laws may be hidden by a wide
range of contaminating processes.

3.4. Contaminated power laws

Before focusing on the processes susceptible to
modify the characteristic exponents of Zipf power laws,
we will consider here the potential effects of external
and internal noise on the extent of the power laws. In
the first approach, the variability of a given descriptor
is driven by “news” events, which represent exoge-
nous variables (exogenous in the sense that they are
not a part of an internal mechanism which drives the
descriptor fluctuations), for instance, the motion of
dinoflagellate cells induced by vertical turbulent ed-
dy diffusivity. On the other hand, internal noise refers to
the existence of an engine within the cells (i.e. endog-
enous) which generate motion by mechanisms of feed-
back of the motion of the cells upon themselves.

3.4.1. External (white) noise
If varying amounts of noise are added to the power

function Xr∝ r−α as:

Yr ¼ ðr−a þ eÞ ð10Þ

where ε is a white noise whose amplitude is defined
as being a given percentage of the maximum value of
Xr, then the noise causes a rightward departure from
the straight line at a rank proportional to the amount
of noise added (Fig. 4). Measuring the point of
departure from a power law for a variety of noise
levels (here 0.01, 0.1, 1 and 10%) recovers the
original function for Zipf plots. Such a graphical
approach could be very valuable to estimate the extent
to which noise contaminates or contributes to the
measured signal.

Consider two situations where a simulated power
law function (Xr∝ r−α, with α=0.18) is mixed with a
random noise εi, vertically offset so as not to overlap,
i.e. ε1∈ [maxXr

, χ1] and ε2∈ [χ2, minXr
], as Yr=Xr+εi.

This could illustrate the expected outcome of a
transect crossing a hydrodynamic front separating
two distinct structural entities and/or a vertical profile
crossing a strong thermocline (Fig. 5A, B). In both
cases, the subsequent Zipf plots exhibit a clear step
function indicative of a structural discontinuity
(Fig. 6A, B) between the characteristic behaviors
expected in case of randomness and power law.
However, while we used the same power law in both
cases, the exponents and the goodness of the power
law fits are different (Fig. 6).

This result could lead to misinterpretation of Zipf
plots. The widely acknowledged assumption that any
range of values with the same extent (e.g. 10 to 100,
or 10000 to 10090) on the x-axis produce the same
range of values of the y-axis is no longer valid in the
nonlinear framework of power laws. Thus, different
ranges of rank, r, values, 225 to 450 (Fig. 6A) and 1
to 450 (Fig. 6B), return different ranges on the y-axis,
and thus different laws. As a consequence, to conduct
Zipf analyses successfully and for the results to be
meaningful, we recommend here to analyze separately



Fig. 3. Simulated increasing and periodic trends before (grey curve) and after (open diamonds) being contaminated by observational white noise
(A, D), and their subsequent Zipf signatures in linear (B, C) and log–log (D, E) plots. In both cases, the symbol θ represents space or time in case of
time series or transect studies, respectively.
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the different ranges of values identified in a prelimi-
nary global analysis as being separated by a step func-
tion. Fig. 7 thus illustrates how the simulated power law
Xr∝ r−α is recovered by separately analyzing the values
characterized by ranks ranging from 225 to 450 for ε1
(see Figs. 5A and 6A).



Fig. 4. Log–log plot of a power law (diamonds)with different percentage
of additive noise (0.01, 0.1, 1 and 10%, from bottom to top).

318 L. Seuront, J.G. Mitchell / Journal of Marine Systems 69 (2008) 310–327
The combination of randomized values of the
power law Xr∝ r−α and the non-overlapping noise,
εi, (Fig. 5A–C), leads to results similar to those in
Fig. 6. Zipf analysis is then revealed to be extremely
powerful and valuable in the identification and the
quantification of hidden structural properties of any
data sets.

3.4.2. Internal (process) noise
Instead of considering an external process (i.e.

observational or instrumental noise), the power law
itself can be contaminated by internal variability. In
such cases, the power law function Xr∝ r−α (with
α=0.18) is rewritten as:

Yr ¼ ðrFr � eÞ−a ð11Þ
where ε is still a white noise term whose amplitude is
defined as being a given percentage of the maximum
value of Xr, here randomly chosen as being positive or
negative. Whatever the amount of noise considered
(here between 5 and 100%), the exponents α estimated
from Eq. (3) cannot be statistically regarded as being
different from the expected values of 0.18 (pb0.01).
Fig. 5. Power law distribution Xr∝ r−0.18 combined with a white noise
distribution εi as Yr=Xr+εi, as a caricature of two populations
separated by a sharp hydrological gradient (A, B) or mixed (C). The
two populations, characterized by a power law Xr and a random
distribution εi, have been considered as fully separated (A, B), with
εi=ε1 (ε1∈ [max Xr

, χ1]) and εi=ε2 (ε2∈ [χ2, min Xr
]), and fully mixed

(C), with εi=ε1. The symbol θ represents space or time in case of time
series or transect studies, respectively.
3.4.3. Competing power laws
In this section, we will investigate examples that

could be encountered in the ocean, and that result in a
modification of α.

3.4.3.1. Case study 1: mixing non-interacting species.
Consider two theoretical phytoplankton populations sep-
arated by a sharp hydrological gradient. One is composed
of diatoms which can reasonably be thought as following
a power law form, Xr∝r−α (here α=0.18), with respect
to their large size and their aggregative properties. The



Fig. 6. Zipf plots of the two theoretical situations illustrated in Fig. 5A,
B. Note that while the same power law have been used in both
situations, the original power law Xr∝ r−0.18 is recovered only when
XrNεi (B); when Xrbεi the power law fit to the power law population
is not significant (A). The dotted circles indicate the step function
behavior of the Zipf plot that should be regarded as being indicative of
structural changes within the data set.

Fig. 7. Illustration of the “density–dependence” of Zipf plot. The Zipf
behavior of the power law population Xr characterized by Xrbεi
(black squares; Fig. 6A) is recovered (open squares) when the range of
values identified as being separated by a step function (see Fig. 6A, B)
have been analyzed separately.

Fig. 8. Log–log plot signature of the Zipf behavior resulting from
mixing two theoretical populations characterized by two distinct power
laws and overlapping ranges of concentrations. The range of values
corresponding to the overlapping of the two power laws presents an
intermediate power law behavior with a characteristic exponent α′
defined as α1bα′bα2 and α′=kα1+ (1−k)α2.
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other one is composed of dinoflagellates that, because of
their smaller size, high concentration and motility, are
more homogeneously distributed and are then simply
represented here as a background concentration ki. The
resulting pattern can then be thought of as the
combination Yr=Xr+ki. It is emphasized here that any
change in the background concentration ki does not
affect the power law nature of the original data set Xr.
However, the exponent α′ of the resulting power laws
Yr∝r−α′ decreases with increasing values of ki. The
addition of an increasing background concentration thus
smoothed out the differences between ranks. The
observation of such a decrease in empirical power law
exponents from field data sampled at the same point
before and after the disruption of a hydrological gradient,
or at different period of the seasonal cycle, would



Fig. 9. Log–log plot signature of the Zipf behavior expected in case of
a power law Xr (open diamonds) competing with a random mortality
component (Y2r=Xr−εXr), where ε=0.05, 0.25, 0.50 and 0.75 (from
top to bottom).
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strongly indicate a structural change in the relative
organization of the studied biological communities.

Now, consider a situation where two spatially
separated phytoplankton populations are mixed, e.g.
two monospecific diatom populations, characterized by
overlapping ranges of concentrations and distinct power
law forms, X1r∈ [2.99,13.79] and X1r∝ r−α1 with
α1=0.18, and X2r∈ [3.19,31.37] and X2r∝ r−α2 with
α1=0.24, respectively. Evenly mixing these two popu-
lations without considering any interactions will result
in the Zipf structures shown in Fig. 8. The range of
values corresponding to the overlapping of the two
power laws presents an intermediate power law
behavior with a characteristic exponent α′=0.196
(Fig. 8). More generally, the values of α′ are implicitly
bounded between α1bα′bα2, where α1 and α2 are the
Zipf exponents of the original power laws, and depend
on the proportion of values from each original power
law, following α′=kα1+ (1−k)α2. Finally, as stated
above, a separate analysis of the values greater than the
critical concentration (i.e. 13.79) associated with the
step function shown in Fig. 8 is necessary to recover the
original exponents α2=0.24.

3.4.3.2. Case study 2: mixing interacting species.
Here, we consider one of the previous phytoplankton
populations whose concentration Xr is characterized by
a power law form Xr∝ r−α, with α=0.24. We will now
investigate the effects of processes capable of locally
decreasing (i.e. mortality related to inter- and intraspe-
cific competition, or grazing) or increasing (phytoplank-
ton growth or coagulation processes) phytoplankton
concentration on the Zipf signature of the population
Xr∝ r−0.24.

3.4.3.2.1. Decrease in local phytoplankton concen-
tration. First, under the assumption of evenly
distributed grazers, the grazing impact of copepods
can be estimated as a percentage or a Michaelis–
Menten function of the local phytoplankton concen-
tration. Assuming that the ingestion of phytoplankton
cells by copepods is a percentage or a random function
of food availability, the resulting food distributions can
be described by:

Y1r ¼ Xr−kXr ð12Þ

and

Y2r ¼ Xr−eXr ð13Þ

where k is a constant, 0≤ k≤1, and ε is a random
noise process, i.e. ε∈ [0,1]. For increasing values of k,
the function Y1r is simply shifted downward on a log–
log Zipf plot (not shown), indicating a decrease in the
background concentration of the population. A similar
trend can be identified in the variable Y2r for an
increasing amount of noise, but with a characteristic
‘noise roll off’ for low rank values (Fig. 9).

Alternatively, following laboratory data on the
feeding of copepods suggesting that ingestion rate can
be fairly represented by a Michaelis–Menten function
(e.g. Mullin et al., 1975), Eqs. (12) and (13) are
modified as:

Y3r ¼ Xr−ImaxXr=ðks þ XrÞ ð14Þ

where Imax is the maximum ingestion rate, ks is the half-
saturation constant for feeding, and Xr the concentration
of food. Fig. 10 shows the Zipf structure of the resulting
phytoplankton concentration Y3r, for different values of
the half-saturation constant ks and the maximum
ingestion rate Imax. It clearly appears that the effect of
grazing is mainly perceptible for low values of Y3r , a
direct consequence of the convex form of the Michae-
lis–Menten function (see Eq. (14)), and leads to a
significant divergence from a power law when Imax is
high and ks is low (compare Fig. 10A, B and C).

However, the two previous approaches are implic-
itly based on the hypothesis of a homogeneous
phytoplankton distribution, which is now recognized
as an oversimplified hypothesis (e.g. Seuront et al.,
1996a, 1999; Waters and Mitchell, 2002; Waters et al.,
2003), and did not take into account potential behavior
adaptation of grazers to varying food concentrations
(e.g. Tiselius, 1992). If one considers that the remote



Fig. 10. Log–log plot signature of the Zipf behavior expected in case
of a power law Xr (open diamonds) competing with a Michaelis–
Menten grazing component (Y3r=Xr− ImaxXr / (ks+Xr)). For a given
maximum ingestion rate Imax, the effect is stronger for high values of
the half-saturation constant ks.
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sensing abilities (e.g. Doall et al., 1998) of copepods
can lead to aggregation of grazers in areas of high
phytoplankton concentrations as investigated both
empirically and numerically (e.g. Tiselius, 1992; Saiz
et al., 1993; Leising and Franks, 2000; Seuront et al.,
2001), Eq. (13) can be modified as:

Y4r ¼ Xr−10ðXr=kÞ ð15Þ

where k is a constant and the ingestion function I(Xr)=
10(Xr/k) represents an increased predation impact on
higher phytoplankton concentration. The advantage of
the function I(Xr) is that it can be regarded as a
representation of both aggregation of copepods with
constant ingestion rates and evenly distributed cope-
pods with increasing ingestions rates in high density
phytoplankton patches. Decreasing values of the
constant k increases the grazing impact on high
density patches (Eq. (15)). The grazed phytoplankton
population then diverges from a power law form for
high values of Y4r, but asymptotically converges to the
original power law for the smallest values of Y4r, i.e.
Y4r∝ r−α for r→ rmin (Fig. 11).

While the previous examples have been based on
zooplankton grazing on phytoplankton, we neverthe-
less stress the generality of our approach as similar
results could have been obtained considering two
phytoplankton populations competing for the same
nutrient resource using Michaelis–Menten or Droop
functions.

3.4.3.2.2. Increase in local phytoplankton concen-
tration. For the sake of simplicity, we consider that
phytoplankton growth (in response to physical coagu-
lation or nutrient uptake) could be represented as a
percentage or a random function of the actual phyto-
plankton concentration Xr. Eqs. (12) and (13) are then
respectively rewritten as:

Y5r ¼ Xr þ kXr ð16Þ

and

Y6r ¼ Xr þ eXr ð17Þ

where k is a constant, 0≤k≤1, and ε is a random noise
process, i.e. ε∈ [0,1]. For increasing values of k, the
function Y5r is, in full agreement with what have been
concluded from Eq. (12), shifted upward on a log–log
Zipf plot (not shown), indicating an increase in the
background concentration of the population. Using
different values of k in Eq. (16) has no effect on the
shape of the related Zipf plots and exponents α′



Fig. 11. Log–log plot signature of the Zipf behavior expected in case
of a power law Xr (open diamonds) competing with a preferential
grazing component for high phytoplankton concentrations (Y4r=Xr−
10(Xr/k)). The grazed phytoplankton population diverges from a power
law form for high concentrations, but asymptotically converges to the
original power law for the smallest values. The extent of the observed
divergence is controlled by increasing grazing pressure k (from top to
bottom).

Fig. 12. Log–log plot signature of the Zipf behavior expected in case
of a power law (open diamonds) competing with a random growth
component (Y6r=Xr+εXr) where ε=0.25, 0.50, 0.75 and 1.00 (from
bottom to top). The arrows indicate the minimum of a range of Y6r
values locally diverging from a power law because of successively
increasing random increments. The dashed lines indicate show the
power law behavior of the initial values Xr.
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(Y5r∝ r−α′) that remain equal to the original power law,
i.e. Y5r∝ r−0.24. Slightly different conclusions can be
drawn from the behavior of the Zipf plots of the function
Y6r (Fig. 12). First, increases in the amount of noise ε
(ranging from 25 to 100%) lead to a vertical offset of the
function Y6r when compared to the original power law.
The resulting functions exhibit the characteristic
downward roll-off signature related to randomness, but
might also locally show increasing trends that are
intrinsically caused by the random component in Eq.
(17). They could be misleading, especially when they
occurred over the highest rank range (see arrows in
Fig. 12), and must not be related to break points
indicative of structural discontinuities (see above) that
would erroneously lead to a separate analysis of
different subsections of the original data set. Finally,
even if the exponents α′ fluctuate around the original
value, they are never significantly different (pb0.05).

3.4.3.2.3. Increase vs. decrease in local phytoplank-
ton concentration. Because the two previous situa-
tions are unlikely to be found individually in the ocean,
but should also occur concomitantly, we combine Eqs.
(12) and (16), and Eqs. (13) and (17) as:

Y7r ¼ Xr þ ðk1−k2ÞXr ð18Þ
and

Y8r ¼ Xr þ ðe1−e2ÞXr ð19Þ

where k1 and k2 are constants (0≤k1≤1, and 0≤
k2≤1), and ε1 and ε2 are random noise processes, i.e.
ε1∈ [0,1] and ε2∈ [0,1]. The resulting functions Y5r
and Y6r, exhibit intermediate behaviors between
what have been observed from Eqs. (12) and (16), and
Eqs. (13) and (17). For k1=k2, the original power law,
Y7r∝ r− 0.24, is recovered, the growth component
compensates for the death component. In contrast,
when k1bk2 and k1Nk2 the resulting function Y7r is
shifted downward and upward on a log–log plot as
previously observed from Eqs. (12) and (16). While the
overall structure is preserved, the latter and the former
cases lead to decreases and increases in the background
concentration of the population. The Zipf plot of the
function Y8r, shown in a log–log plot, exhibits the
different characteristic features previously identified: a
power law behavior not significantly different from the
original one (i.e. α′≈α=0.24) followed by a roll off
towards low Y8r values (Fig. 13). As stated above,
successive positive random fluctuations might lead to
local increasing trends slightly diverging from a power
law (grey arrow), but should not be associated to a step
function.



Fig. 14. Log–log plot signature of the Zipf behavior expected in case
of a power law Xr (open diamonds) competing with combined constant
random and growth components (Y9r=Xr±kXr; a) and combined
random growth and mortality components (Y10r=Xr±εXr; b), where
the constant k and the noise ε have been chosen as k=0.25, 0.50 and
0.75, and ε=0.25, 0.50, 0.75 and 100 (from bottom to top). The grey
arrows indicate a step function (A), while the black one (B) indicates
the beginning of a local departure from a pure power law due to
successively increasing random increments. The dashed lines indicate
show the power law behavior of the initial values Xr.

Fig. 13. Log–log plot signature of the Zipf behavior expected n case of
a power law Xr (open diamonds) competing with random growth and
mortality components (Y8r=Xr+ (ε1− ε2)Xr), where the random
processes ε1 and ε2 have been chosen as ε1=0.75 and ε2=0.25,
ε1=0.50 and ε2=0.50, and ε1=0.25 and ε2=0.75 (from bottom to
top). The dashed lines indicate show the power law behavior of the
initial values Xr.
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Next, we consider a situation where the positive and
negative fluctuations are purely randomly driven as:

Y9r ¼ XrFkXr ð20Þ

and

Y10r ¼ XrFeXr ð21Þ

where k is a constant (0≤k≤1) and ε is a random noise
process, i.e. ε∈ [0,1], whose amplitude is defined as
being a given percentage of the maximum value of Xr; k
and ε are randomly chosen as being positive or negative.
The resulting Zipf signatures of the functions Y9r and
Y10r are shown in Fig. 14 as log–log plots (Fig. 14). The
positive and negative components of Eq. (20) clearly
appeared as separated by a step function (Fig. 14A). The
positive components lead to power laws that are not
significantly different from the original. A separate
analysis of the range of values separated from the power
laws by step functions (arrows; Fig. 14A) did not show
any power law behavior. Alternatively, the effects of Eq.
(21) on the initial power law behavior are the
characteristic downward roll-off signature related to
randomness and the fluctuations around a power law
behavior that is not significantly different from the
original (Fig. 14B). To ensure the relevance of Zipf
analysis–as introduced by Eqs. (2)–(3)–the few data
points diverging upward, or flattening, towards the first
rank values must not be included in the regression
analysis aimed at estimating α. Indeed, the former case
describes a distribution marked by the dominance of a
few (ultimately one) ‘hotspot’ that is likely to be
chronically undersampled (Seuront et al., 1999), while



Fig. 15. Log–log plot signature of the Zipf behavior expected in case
of a power law Xr (open diamonds) competing with a persistent
fractional Brownian motion.
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the latter case refers to a distribution that has been
systematically oversampled. These issues have been
specifically detailed elsewhere in the framework of
information theory (Mandelbrot, 1953), and led to the
modified version of the generalized Zipf law presented
above; see Eq. (4).

It is now known that the distributions of nutrients,
phytoplankton and zooplankton exhibit different levels
of persistence (Tsuda, 1995; Seuront et al., 1996a,b,
1999; Seuront and Lagadeuc, 2001; Seuront et al.,
2002). In addition, the interplay between the biotic
properties of individuals and populations and abiotic
processes produce space–time structures characterized
by long-range correlation (i.e. persistence, Kendall
et al., 2000). We consider, finally, a situation where
the local concentration of a phytoplankton population
initially driven by a power law Xr∝ r−0.24 could be
influenced by a fractional Brownian motion resulting
from the combined effects of local biological (nutrient
uptake, inter- and intraspecific competition, grazing
pressure, infection) and physical (advection, diffusion,
turbulence) processes following:

Y11r ¼ XrFfBmXr ð22Þ

where fBm is a persistent fractional Brownian motion
(see Fig. 2b) whose amplitude is defined as being a given
percentage of the maximum value of Xr, and randomly
chosen as being positive or negative. The resulting Zipf
signature (Fig. 15) exhibits downward roll-off charac-
teristic of randomness for high rank values, and long-
range correlations around a power law behavior
(Y11r∝r−α′, with α′=0.240±0.005; x̄±SD) that is signi-
ficantly different from the original power law (Xr∝r−0.24,
pN0.05). These long range correlations exist whatever the
values of r, but are more clearly visible for the low values
of r, i.e. high values of Xr in Eq. (22).

4. Discussion and conclusions

We have demonstrated the potential for the seldom
used Zipf power law to be a powerful tool in the analysis
and the classification of marine ecosystems in the
presence of randomness, monotonic and periodic trends,
internal and external noise, mixing and environmental
forcing. In particular, we show that Zipf analysis can be
directly and easily applied to any data set without
intensive computational, mathematical or statistical
analysis, and with a minimum amount of calculation.
It can be conducted in a few minutes with most standard
software packages even for a data set of several
thousands data points. We nevertheless stress that Zipf
analysis should not be used without a preliminary visual
inspections (an absolute prerequisite in data analysis
that is often neglected), as they could erroneously be
used as a direct index of patchiness. Indeed, a
distribution characterized by a patch of ten high density
data points, ten randomly or regularly spaced ‘hotspots’,
or ten ranked ‘hotspots’will return exactly the same Zipf
shape. Zipf analysis cannot be then substituted for
spatially and temporally informative techniques such as
spatial autocorrelation analysis and spectral analysis. In
addition, the one-to-one correspondence between Zipf
and Pareto distributions analytically derived here could
be regarded as a way to reconcile previous and future
works using one or the other technique. The strength of
the Zipf framework also has the desirable properties
of not requiring any assumptions about the statistical
distribution, regularity of sampling intervals and
stationarity of the data set that are sometimes absolute
prerequisites to some statistical data analysis techniques.

Finally, we stress that the Zipf framework can be
conveniently used as a tool to identify and classify
structures in marine ecosystems, but also to infer the
underlying processes that generate the observed pat-
terns. The characteristic shapes introduced here, and
most importantly their potential changes in time and/or
space, make it possible to hypothesize the origin and the
ecological implications of such modifications, as well as
providing useful insights on what further analysis to
conduct and how to design of sampling schemes. For
instance, a phytoplankton transect study providing a
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step function in a Zipf plot (cf. Fig. 2D) will indicate
different levels of organization within the same popula-
tions, and maybe different sub-populations that would
require separate analysis and/or additional sampling. For
phytoplankton distribution, it is easy to imagine that
mixing, changing nutrient and/or zooplankton concen-
trations will alter distribution and intensity to the extent
that the characteristic exponents α and β for a set of data
varies due to natural processes. Thus, a phytoplankton
population exhibiting a single power law behavior
before wind stratification and investigated temporally
from a fixed point might exhibit successive changes
(e.g. Figs. 10 and 11), and the identification and the
classification of the Zipf shapes will then allow one to
infer the nature of the observed changes. In turn, a study
mainly focusing on phytoplankton distributions which
results in transitions such as those shown in Figs. 6 and
8 in spring and autumn respectively may well be
modified and adapted to investigate the potential
differences in the grazers community. More generally,
if phytoplankton properties such as growth or distribu-
tion follow a power law, then mortality processes such
as grazing and lysis may well follow a similar but
competing power law as hypothesized and illustrated
above. Thus, if such power law behavior can be shown
in phytoplankton, the removal of the first ranks (large
values) could be interpreted as an indication of
predation. However, the ubiquity of power laws is not
an absolute requirement as many nonpower law
processes could be involved in the modification of the
pure power law behavior, as well as the removal of the
last ranks (low values). The establishment of a
comprehensive typology of marine ecosystems struc-
tures and functions requires checking and experiment-
ing, but would undoubtedly be a useful model in that it
could work spatially as well as temporally, adding
another approach to studying marine ecosystem dynam-
ics. This assumes that effects from mixing, infection and
nutrient starvation can be teased out from those of
grazing. Alternatively, perhaps a more unified approach
would provide a better predictor of overall dynamics.
The general applicability, as well as the subsequent
ecological interpretations, of these two related techni-
ques are fully illustrated elsewhere (Mitchell and
Seuront, this issue; Seuront et al., in press).
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