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Abstract

Intermittency, a fundamental property of high Reynolds number turbulence, has seldom been described in ocean
sciences. As a consequence, and despite several recent studies describing the intermittent distributions of temperature,
salinity, nutrient concentrations, phytoplankton biomass and zooplankton abundance, the implications of
intermittency on (i) the distribution of purely passive and biologically active scalars (e.g., phytoplankton cells) and
(ii) biophysical couplings in the ocean are still poorly understood. We thus present both terminological and
phenomenological clarification of the intermittency concept in turbulence studies. Next, univariate multifractal
procedures investigating the properties of intermittent stochastic processes are presented. They characterize the
statistics of intermittent variables using a set of three basic parameters in the multifractal framework, whatever the
scales and the intensity. The multifractal formalism is then extended to more than one variable to investigate the degree
of dependence among random fields by investigating the nature of their joint distribution. The main advantages of these
unusual formalisms are that they make no assumptions about the spectrum or the distribution of data sets, fully take
into account the intrinsic multiscaling properties of the data, and more generally explore qualitatively and
quantitatively the correlations of large and small fluctuations of processes.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Intermittency is a fundamental property of high
Reynolds number turbulence, such as oceanic
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turbulence. Numerous experimental data analyses
done in different frameworks and on different
geographical regions have shown that physical and
biological patterns and processes in marine
sciences display high intermittency (Gibson,
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1991; Pascual et al., 1995; Seuront et al., 1996a,
1999; Jou, 1997; Jimenez, 2000). This intermit-
tency may correspond to a basic property of
aquatic ecosystem studies, as sharp, local fluctua-
tions are ubiquitously observed in space-time
distributions of turbulent dissipation rates, tem-
perature, salinity and plankton abundance. These
localized events have critical consequences at
microscale (i.e. <1m), since planctonic mating,
predator-prey contacts and chemical reactions all
occur at microscale. It is thus crucial to accurately
describe and model intermittency and the cou-
plings between intermittent variables (i.e. turbu-
lent velocity and phytoplankton abundance).

In describing fully developed turbulence, classi-
cal methods often characterize the scaling proper-
ties of velocity and passive scalar fluctuations
using structure functions, i.e., the statistical mo-
ments of increments of the original turbulent field,
with varying time or space lags (see Monin and
Yaglom, 1975; Frisch, 1995). This approach is able
to characterize all the fluctuations at all scales; it
can indicate the scaling regimes and scale breaks,
and fully describes the probability distribution of
the fluctuations of a given increment lag. Follow-
ing the earlier work of Meneveau et al. (1990), we
show here how such a methodology can be
extended to deal with the couplings of two
simultaneously recorded intermittent fields, such
as velocity and temperature, or temperature and
fluorescence. We characterize these couplings
using a joint moment approach. In this framework
couplings are studied at all scales and all
intensities. This generalizes the usual correlation
function, and we propose the denomination of
“Generalized Correlation Function” (GCF). We
theoretically provide predictions corresponding to
special cases: independence, proportionality, sto-
chastic proportionality, etc. We finally argue that
such procedure should be generalized for inter-
mittent fields, and is able to detect very particular
and important couplings. GCF’s effectively find
and characterize the degree of biological and
physical coupling. Some findings shown here may
well be quite general for biophysical couplings,
including identical fluctuations for medium and
low intensities, and very different behaviour for
high intensity fluctuations.

In this paper, we discuss the concept of
intermittency, and then review the multifractal
framework. We then introduce an objective
technique for determining if two stochastic pro-
cesses can be regarded as being independent or
not, and for investigating the nature of their
potential coupling.

2. Intermittency

Historically, the notion of intermittency (see
Fig. 1 for examples of intermittent distributions)
has presented many challenges to investigators
approaching from a variability of fields. Batchelor
and Townsend (1949) write that “the basic
observation which requires explanation is that
activation of large wave-numbers is very evenly
distributed over space”, but that “as the wavenum-
ber is increased the fluctuations seem to tend to an
approximate on—off, or intermittent, variation”.
Nearly two decades later, Stewart (1969) mentions
that “The non-Gaussian, intermittent character of
the small-scale structure becomes more marked as
the Reynolds number increases. It seems to be
fundamental to the nature of the turbulence cascade,
but as with many aspects of turbulence we do not
have a fully satisfactory theoretical explanation”. In
1995, Frisch states that a process is intermittent
when it “displays activity during only a fraction
of the time, which decreases with the scale under
consideration”. In marine sciences, intermittency
has mainly been described in terms of “uneven
distributions” and “‘patchiness” in the plankton
and has been qualitatively and quantitatively
investigated over the last century (e.g., Haeckel,
1891; Hardy, 1936; Cushing, 1962; Cassie, 1963).
Early scaling techniques such as autocorrelation
and power spectral analyses (Platt and Denman,
1975), together with the scaling tools introduced
by Mandelbrot (1977, 1983) as fractal geometry,
and the multifractal cascade models of turbulence
(see Frisch, 1995 for a review) that followed,
have been fruitful approaches to quantifying
intermittency. More recently a number of
papers have developed methods for quantifying
turbulent activity in the marine system as
a function of both the spatial and temporal scale,
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Fig. 1. Illustration of the intermittency concept using velocity
(A), shear (B) and instantaneous dissipation rates (C) obtained
from the ocean with a new free-fall profiler (TurboMAP,
Turbulence Ocean Microstructure Acquisition Profiler) record-
ing turbulent fluctuations at 256 Hz. Intermittency, character-
ized by sharp and local fluctuations, is more clearly visible in
the shear and the dissipation rates signals than in the velocity
signal.

the active region occupied, and their intensity; see
for example Jou (1997), Seuront et al. (2001),
Currie (2001) and Fisher et al. (2004). Clearly,
intermittency is widely observed, but has so
far escaped the confines of a narrow, precise
definition.

The definition of intermittency greatly varies
from author to author, leading to a non-unified
framework. Jiménez (2000) states that “‘intermit-
tency is a common phenomenon in many complex
systems, and is a natural consequence of cascades”.
According to Svendsen (1997), the production of
turbulence is not a continuous process but usually
has an intermittent character and the turbulence
appears as bursts. Estrada and Berdalet (1997) and
Jiménez (1997), referring to the coherent nature of
turbulence, define intermittency as a general
feature of turbulent flows, related to the presence
of strong coherent vortices, with diameters of the
order of 10 times the Kolmogorov scale [,
I =3 /3)1/4 where v is the kinematic viscosity
(m?s™") and ¢ the turbulent kinetic energy
dissipation rate (m*s>). On the other hand, the
term “intermittency’” as been used to characterize
“the phenomena connected with the local variability
of the dissipation” (Jiménez, 1998) as well
as ‘“‘instantaneous gradients of scalars such as
temperature, salinity or nutrients, greatest at scales
similar to the Kolmogorov microscale” (Gargett,
1997; Sanford, 1997). Pope (2000) defines inter-
mittency in two distinct ways. First, describing
a sharp interface between a turbulent region and
a non-turbulent region, he considers that an
intermittent flow is characterized by a motion
that “‘is sometimes turbulent and sometimes non-
turbulent”. Secondly, he introduces the concept
of “‘internal intermittency” to characterize the
strong fluctuations perceptible in the instanta-
neous distribution of the dissipation rate
observed by Batchelor and Townsend (1949).
A more intuitive definition can be found in
Seuront et al. (2001) who state that “this form of
variability reflects heterogeneous distributions with
a few dense patches and a wide range of low density
patches”.

For the community of engineers in fluid
mechanics, intermittency is often viewed as a
transition between laminar and turbulent flows.
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Wilcox (1998) also mentions that “approaching the
freestream from within the boundary layer, the flow
is not always turbulent. Rather, it is sometimes
laminar and sometimes turbulent, i.e., it is inter-
mittent”. The intermittency phenomenon is also
often mixed up with its statistical consequences.
For instance, Seuront et al. (2001) consider that in
an intermittent framework “we occasionally should
expect stronger bursts which accentuate the skew-
ness of a given probability distribution”. Similarly,
Frisch (1995) considers that “the kurtosis is a
useful measure of intermittency for signals having a
bursty aspect”.

If the common factor emerging from the
examples described above seems to be the irregular
and unpredictable nature of intermittent distribu-
tions, we stress the need to clarify what is meant,
or at least what we mean here, by “intermittency”.
Pope (2000) argues that intermittency is a dissipa-
tion-range phenomenon, leading to very violent
events that cannot be smoothed out until the
external scale is reached. These dissipation-range
intermittent bursts are perceptible in the whole
inertial subrange. Thus, intermittency is found at
all scales, as other turbulent phenomena. Inter-
mittency can also be regarded, as suggested by Jou
(1997), as strong fluctuations of the energy transfer
between eddies of different scales. We will see in
the next section that this assertion is fully
congruent with the phenomenological way to
build turbulent cascade models. Let us also note
that a potential reason for intermittency is the
presence of strong coherent vortices, with dia-
meters of the order of 10 times the Kolmogorov
scale (Siggia, 1991; Jiménez et al., 1993; Jiménez
and Wray, 1994). An extensive discussion of the
coherent nature of turbulent flows can be found in
Frisch (1995).

While most of the above cited references
specifically referred to intermittency in the frame-
work of turbulent flows, we stress that a general
consensus can be reached if one considers that a
given pattern/process is intermittent in structure if
(1) it is characterized by sharp fluctuations, (ii) it is
responsible for a skewed probability distribution,
and (iii) it has a long-term memory signature,
perceptible from the power law form of its
autocorrelation function.

3. Characterizing univariate intermittent
distribution: a review of the multifractal framework

3.1. Scaling relations for velocity and passive
scalars

Scaling relations for turbulent velocity and
passive scalar (originally temperature) fields have
been expressed in Eulerian turbulence using the
energy flux ¢ as (Kolmogorov, 1941; Obukhov,
1941):

3
g A (AII/I) (1)

and the scalar variance flux y as (Obukhov, 1941,
1949; Corrsin, 1951):

AS)* AV
=l @

where AV, = |V(x+ 1) — V(x)| and AS; = |S(x +
/) — S(x)| are the velocity shear and passive scalar
gradient at scale /, and AV;/[ is the inverse of the
local eddy turnover time. Originally, these scaling
relations were considered in the framework of
homogeneous turbulence, i.e. the fluxes & and y;
were considered as homogeneous, exhibiting no
scale dependence. As a consequence, a unique
exponent was required for the velocity and passive
scalar, the so-called % law in physical space:

AV, = I3, )

AS; ~ '3, (4)

In Fourier space, widely used in ecology to
separate and measure the amount of variability
occurring at different frequencies and wavenum-
bers, assuming local isotropy and three-dimen-
sional homogeneity of turbulence in the inertial
subrange, Eqs. (3) and (4) can be rewritten to
describe the velocity fluctuations and the fluctua-
tions of a passive scalar using the spectral densities
E(k) and Eg(k) as:

Ey(k)~k7Pr, Q)

Es(k) ~ kP, (6)

where k is equally a frequency or a wavenumber
whether velocity and passive scalar fluctuations
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are considered in time or in space, and f; and fig
are characteristic spectral exponents defined as
By = Bs = 5/3 (Fig. 2).

To move beyond the somewhat restrictive cases
in which the assumption of homogeneity strictly
applies, requires taking into account the inter-
mittency of the system. Intermittency is ubiquitous
in the ocean at the most commonly observed
scales. The subscript / in Egs. (1)-(4) accounts for
the scale dependence of the intermittent turbulent
fluxes. Since many of the assumptions underlying
traditional spectral analysis can be restrictive,
given the typical conditions encountered in marine
systems, methods that generalize the approach of
modelling random variability (e.g., Yamazaki and
Okubo, 1995; Visser, 1997) are investigated here.
In the multifractal framework, such methods allow
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Inertial subrange

Fig. 2. Schematic representation showing the form of the
energy spectrum of turbulent velocity cascade, where E(k) is the
spectral density and k is a wavenumber (m~'). The kinetic
energy generated at large scale L cascades through the inertial
subrange through a hierarchy of eddies of decreasing size down
to the viscous Kolmogorov scale /;, where it is dissipated into
heat. Practically, this cascade is observed between the outer
scale L, and the resolution scale / of the measurements (often
limited by the size and/or the sampling frequency of the
sampling apparatus), leading to the scale ratio A = L//. The
slope of the linear behavior of the spectral density versus the
wavenumber in a log—log plot provides an estimate of the so-
called spectral exponent f. One must also note here that
because time and space are linked through the ‘Taylor’s
hypothesis of frozen turbulence’ which states that the temporal
and spatial scales ¢ and / are related by a constant velocity v
(v =1/1) the spectral density can equivalently be expressed as a
function of the frequency f (s~ ).

the intermittency of turbulent velocity and passive
scalar fluctuations to be fully taken into account
(Seuront et al., 1999, 2002, 2005).

In cascade models of turbulence (e.g., Yaglom,
1966; Frisch et al., 1978; Benzi et al., 1984;
Schertzer and Lovejoy, 1983, 1987, Meneveau
and Sreenivasan, 1987; Yamazaki, 1990; Saito,
1992; She and Levéque, 1994; see also Frisch,
1995, and Seuront et al., 2005 for reviews), the
highly intermittent fluxes are the results of a
multiplicative process in which the variability is
built up from large to small scales: larger
structures are multiplicatively randomly modu-
lated by smaller scales. This leads to multifractal
fields, with the following multiscaling statistics
(Schertzer and Lovejoy, 1987; Schmitt et al., 1996):

(o) ~ AKD x K0, o
)1y & 28D o |7KAD, ®)
([AV]9) ~ 270D [ )
([(AS)? AV ]0y ~ )~ErsB)  [ErsGa), (10)

where the angle brackets “¢ - >” indicate ensem-
ble (statistical) averaging, A the scale ratio between
the largest external scale L and the actual scale /
(i.e. 2= L/I), K,(q) and K,(¢) the scaling moment
functions for the fluxes ¢ and y;, {1/(¢) and {y s(q)
the scaling moment functions of the velocity
structure function and the joint structure function
scaling exponent of the product (AS;)*AV;. Using
Egs. (1) and (2), the functions K.(¢) and K,(g) are
defined as:

Kx(‘I) =q— CV,S(3Q)- (12)

Because the fluxes are conserved by the equation
of motion over the inertial subrange, they are
assumed in this framework to be independent of
scale (i.e., strictly scale invariant):

(en) = (e1), (13)
() = () (14)
It subsequently appears from Egs. (7) and (8) that
K, (1) =0, (15)
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K,(1)=0. (16)

Such multifractal fields are called ‘“‘conservative
multifractals”. The conservation of the fluxes ¢
and y; implies

=1, (17)

{rs(3) =1, (18)

which corresponds to the exact relations for the
small-scale dissipation fields given by Kolmogorov
(1941) and Yaglom (1949). The scaling moment
functions K.(q), K,(q), {y(q) and {y s(q) charac-
terize all the fluctuations of the fluxes of energy
and scalar variance, and the fluctuations of the
velocity shear and scalar gradient. In other words,
as under fairly general conditions the probability
distribution of a random variable is equivalently
specified by its statistical moments, the scaling
moment functions K(g) and {(¢) describe the scale
dependence of the statistical distributions.

However, the functions K(g) and {(¢) do not
provide the scaling moment function (s(¢g) of the
passive scalar fluctuations defined as

([AS)]1) ~ 175, (19)

The corresponding flux ¢, = 871/ 2)(,3/ ? is indeed a
mixed flux of energy and scalar variance, which is
non-conservative. The two fluxes ¢ and y; are
intrinsically correlated, so they cannot be assumed
independent (Benzi et al., 1992). Alternatively, the
mixed flux may be related to the structure function
of velocity fluctuations and scalar gradients as
(Schmitt et al., 1996):

(@) =q/3+ K.(q/6) — K,(q/2) (20)
and
{s(q) = Ly,s(Bq/2) — {y(q/2). (21)

For monoscaling (i.e. monofractal) processes, the
function {(g) is linear: {(q) = ¢/2 for Brownian
motion, and {(¢) = ¢/3 for homogeneous turbu-
lence. For multiscaling processes, this exponent is
non-linear and concave. Figs. 3 and 4 provide a
step-by-step analysis from spectral analysis to
structure function analysis for turbulent velocity
and in vivo fluorescence fluctuations, to illustrate
the above described concepts and to demonstrate
the generality of their applicability.

3.2. Cascade models for turbulent fluxes

Since the first lognormal proposal of Kolmo-
gorov (1962) and Obukhov (1962), and the first
explicit cascade model of Yaglom (1966), many
different cascade models (e.g., Fig. 2) have been
proposed to represent intermittent fluxes; see
Seuront et al. (2005) for a review of cascade
models in turbulence. We review here quickly
many of these models. A first family of models is
composed of discrete models, for which the scale
ratio between a structure and the daughter
structure is a discrete integer. Due to their discrete
nature, these models are not realistic, but have
been introduced for their simplicity and ability to
reproduce experimental intermittency. These mod-
els include the mono-fractal f-model (Novikov
and Stewart, 1964; Mandelbrot, 1974; Frisch et al.,
1978), the a-model (Schertzer and Lovejoy, 1983),
the p-model (Meneveau and Sreenivasan, 1987)
and the random f-model (Benzi et al., 1984). A
detailed review of these models may be found in
Paladin and Vulpiani (1987), Meneveau and
Sreenivasan (1991), Frisch (1995), Schmitt (2001)
and Seuront et al. (2005).

A more realistic family of models is composed
of “continuous cascades” corresponding to log-
infinitely divisible (log-ID) stochastic models. The
idea of a continuous scale dilatation for the
cascade process has already been recognized by
Novikov (1969). He explicitly showed later (Novi-
kov, 1990, 1994) that this corresponds to choosing
for the logarithm of the cascade process, infinitely
divisible random processes. Infinite divisibility is a
property of probability laws (see e.g., Feller, 1971)
characterized by the fact that any random variable
belonging to this law may be written as a sum of
an arbitrarily large number of independent ran-
dom variables having each the same law (indepen-
dent identically distributed). This property
considerably restricts available probability laws:
the choice of continuous models possessing the
log-ID property is still large but much less than for
discrete models. The most well-known ID laws are
the Gaussian, Lévy-stable, Poisson and Gamma.
We review here the corresponding log-ID contin-
uous cascade models that have been advocated in
various publications in turbulence.
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Fig. 3. Step-by-step analysis of a time series of grid-generated turbulent velocity recorded by hot-wire velocimetry at 100 Hz in a
circular flume (Seuront et al., 2004; A, black) and a synthetic time series with the same spectral properties than the empirical one (A,
grey). While the empirical time series is clearly more intermittent than the synthetic one, their power spectra are fairly similar, showing
a clear scaling behavior over the whole range of available scales, except at the smallest scales for the empirical one because of the
electronic limitations of the instrument (B). This is confirmed by structure function analysis (C). The slopes of the log-log plots of
((AV(r),)") versus t shown for the empirical time series for different values of ¢ (here ¢ =1, 2 and 3 from bottom to top) provide
estimates of the functions {(¢). The non-linear (i.e. intermittent) behavior of the functions {(¢) estimated for the empirical time series
contrasts with the linearity of the functions estimated from synthetic data that cannot be distinguished from the theoretical, non-

intermittent case where {(¢) = ¢/3.

The lognormal model was the first scaling
proposal for intermittent turbulence (Kolmogor-
ov, 1962; Obukhov, 1962). This corresponds to a
quadratic form for {;(g); the condition given by
Eq. (17) together with the condition {,(0) =0
provides an expression for {;(¢) depending on
only 1 parameter, the intermittency parameter

1= Ky(2):

q_ B\ _4
éV(CI)=§—§<<§) —§> (22)

The lognormal model for the velocity field or for
the dissipation in turbulence has been advocated in
several papers (see e.g., Arneodo et al., 1998;



L. Seuront, F.G. Schmitt | Deep-Sea Research II 52 (2005) 1308—1324 1315

(A) 1.3 C) s
11.2
5 A,A’
111 &b
LA
ATD
11.0 4 Y
& 458
—~ s
- = .
= 109 &) 50D
w w3 BN o-
8 108 g Nt P
| Vv & A _ gt
w 8) s /E.BDD
107 - 2 A% e
MA _PHa o
e o -50 s Qee
106 A} gt D s
- =80 S o
b A - S TE
105 7 eadm 2535 5o°°
: 2o £ =H
T s 46
-3 ©
10.4 0 . . .
0 100 200 300 400 500 600 700 800 900 1000 0 1 2 3 4
Logf Logt
®) (D) 20
. Tl B = 166; r2=0.98 e
S
.
15 »
6
e
e
—~ ,"‘
) 4F =) e o 0009
w Z 10 - o ©° °
-
g 2 i o ©
- o
o]
0 @
0.5 .
&
&
-2 o\‘ o S
im ra
4 0.00-
45 40 35 30 25 -20 -15 -10 -05 00 0 1 2 3 4 5
Logf q

Fig. 4. Step-by-step analysis of a time series of in vivo fluorescence recorded in situ at 2 Hz in the offshore waters of the Eastern
English Channel (Seuront, 1999; A, black) and a synthetic time series with the same spectral properties than the empirical one (A,
grey). While the empirical time series is clearly more intermittent than the synthetic one, their power spectra are fairly similar, showing
a clear scaling behavior over the whole range of available scales (B). This is confirmed by structure function analysis (C). The slopes of
the log—log plots of ((AF;)?) versus t shown for the empirical time series for different values of ¢ (here ¢ = 1, 2 and 3 from bottom to
top) provide estimates of the functions {(¢). The non-linear (i.e.) intermittent behavior of the functions {(g) estimated for in situ time
series contrasts with the linear linearity of the functions estimated from synthetic data that cannot be distinguished from the
theoretical, non-intermittent case where {(¢) = ¢H.

Malecot et al., 2000; Chanal et al., 2000; Delour et tive processes under addition (see Feller, 1971).
al., 2001). Correspondingly, the lognormal cascade may be

The Gaussian law belongs in fact to the Lévy- generalized to log-stable cascades, as proposed
stable family corresponding to stable and attrac- originally by Schertzer and Lovejoy (1987) and
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later by Kida (1991). The expression for the scaling
exponent is of the form {(q) = Aq — Bq*. For
turbulent velocity, the normalization conditions
{y(3) =1, provides an explicit expression, as a
generalization of the lognormal process:

=525 ()" -9 @)

where o (0<o<2) is the basic parameter of this
family; o = 2 recovers the lognormal model. The
other parameter C;, is also an intermittency
parameter and characterizes the fractal dimension
of the mean.

Another popular model is the log-Poisson
model. It was first proposed by She and Leveque
(1994) and soon recognized as a log-Poisson model
(Dubrulle, 1994; She and Waymire, 1995). It was
also advocated in Castaing and Dubrulle (1995)
and Dubrulle (1996), among others. For this
model, the equation is the following:

(rg) =3 (1=l = )+ el = . 24

It depends on two parameters 0<f<1 and
0<c<1 that can be estimated experimentally or
proposed based on specific hypothesis.

We may note that no general consensus has yet
emerged concerning the best model for intermit-
tent fluctuations in velocity or passive scalar
turbulence. Each of these models is advocated by
different group of authors, but a final answer will
need new theories or new data.

3.3. General properties

As stated above, the function {}(g) is non-linear
and concave (Figs. 3D and 4D), while the function
K,(g) is non-linear and convex (Fig. 5A). Note
from Eqgs. (22) and (23) that the function K,(g) can
be thought as the intermittency correction to the
non-intermittent case, {;(q) = ¢q/3. For a passive
scalar S, the scale invariant moment function may
be written as

{s(q@) = qH — K,(q), (25)

where {g(q) is estimated as the slope of the best
linear fit of ([AS;]?) versus the scale 4 in a log—log
plot; see Eq. (19) and Fig. 3. K,(q) characterizes
the mixed flux ¢, = ¢, "“y;’". The functions {s(g)

(A)

Ke(q)

(B) 09

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0 ===
-0.10

Ke (a)

Fig. 5. Illustration of the shape of the function K.(¢) (A) and
K,(q) (B) estimated from the turbulent velocity and in vivo
fluorescence time series presented in Figs. 3 and 4, respectively.
Note that in both case the conditions K,(1) = 0 and K,(1) =0
are respected.

and K,(q) are non-linear and concave (Fig. 3D),
and non-linear and convex (Fig. 5B), respectively.
Note from Eq. (25) that the function K,(g) can be
thought as the intermittency correction to the non-
intermittent case, (s(q) = ¢H. H is the degree of
non-conservation of the average process: H =0
for a conservative process (i.e. scale-independent)
and H#0 for a non-conservative process (i.e.
scale-dependent). H is given by H = {s(1), while it
can be seen from Eq. (25) that {3(1)>1/3.
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Finally, we note here that in the multiscaling
framework, intermittency is taken into account
noting that:

By =1+ {p(2), (26)

Bs =1+ (s(2). (27)

We thus see that the intermittency corrections
introduced by respectively the second term of
Egs. (23) and (25) leads to f;,>5/3; see Seuront
et al. (2005) for further details.

4. Characterizing bivariate intermittent
distributions: the “Generalized Correlation
Functions”

4.1. Definition

Standard procedures testing for independence
between two given processes are generally based
on second-order statistics (i.e. covariance and
correlation functions), even when they are con-
ducted in a scaling framework related to spectral
analysis (Legendre and Legendre, 1998) or geos-
tatistical analysis (Kitanidis, 1997). More recent
procedures are based on probability density
functions examination (Lueck and Wolk, 1999).
The former are often implicitly based on Gaussian
framework, for which non-correlation implies
independence. The latter do not deal with the
intrinsic multiscaling properties of intermittent
fields.

We then propose here a new testing procedure
based on joint moments; this can be seen as a high-
order generalization of the wusual correlation
between two variables X and Y. It is based on
some ideas given in Meneveau et al. (1990). In this
paper, joint multifractal measures were studied
both theoretically and experimentally. They con-
sidered mainly mixed moments in the framework
of two cascade models: lognormal cascades and
binomial cascades; they estimated the fractal
dimension of mixed singularities, instead of scale-
invariant moment functions as we choose here.
Furthermore, they did not normalize joint mo-
ments as we do below, to provide joint correla-
tions. The joint correlation functions using

structure functions that we propose here are then
a continuation and a development of this early
study. Joint moments for scaling structure func-
tions have been later proposed in the field of
econophysics, with a generalization of the lognor-
mal multifractal framework to multivariate log-
normal multifractals. The idea was to study
correlations for multiple assets, in order to
characterize their return distributions; see e.g.,
Muzy et al. (2001). However, the final objective of
such a study is portfolio optimisation, which is
different from our analysis of the generalized
correlation between two multifractal fields.

We now turn to the presentation of our
statistical procedure to characterize the relations
between two intermittent processes. Instead of
random variables X and Y, we consider here the
increments of two stochastic processes AX; and
AY; (e.g., Parzen, 1962). For more convenience,
let usnote x = AX; =e% and y = AY; = e%. The
joint moments can be written as the moments of a
vectorial process:

(/31) = (@) = (€96) oc 17O, (28)

where the moment vector Q and the singularity
Vector G are, respectively, given by Q (p,q) and

= (G, G2), and the exponents S(Q) characterize
the multiscaling properties of the joint moments
(x*y1). This was originally proposed in Meneveau
et al. (1990), without the normalization we
introduce here, defining a “Generalized Correla-
tion Function” (GCF hereafter). The normal-
ization of the joint moments is given as

»
p.g) = 20 v, (29)
(xP)( yf1>

The “Generalized Correlation Exponent” (GCE
hereafter), estimated as the slope of the linear
trend of c¢(p,q) vs. / in a log-log plot, is then

expressed as

"p,q) = () + Lv(9) — S, 9), (30)

where (y(p) and (y(gq) characterize the multi-
scaling properties of the single fluctuations (x”)
and (y7) as defined in Egs. (9) and (19), and S(p, q¢)
characterize the multiscaling properties of the joint
fluctuations (x”y?); see Eq. (28). Both ¢(p, g) and
r(p, q) are generalizations of correlation functions.
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They express the correlation between x” and 7,
and their scale and moment dependence. In the
particular case p = ¢ =1, Eq. (28) recovers the
classical expression of the correlation coefficient
between x and y. We nevertheless need to recall
here that, whereas independence implies non-
correlation, non-correlation does not imply inde-
pendence.

Indeed, non-correlation corresponds simply to
the relation r(1,1) =0. Non-correlation implies
independence only in special cases such as for
Gaussian processes. To show this, let us consider
the joint scaling function for lognormal multi-
fractals x and y. Using results for multivariate
Gaussian processes (see any text book on multi-
variate stochastic processes; e.g., Samorodnitsky
and Taqqu, 1994), one has the general expression
for a lognormal process (see also Meveveau et al.,
1990):

S(p.q) = app + axq — asq” — asp” — apq 31
so that
r(p,q) = S(p,0) + S(0,9) — S(p, 9) (32)
giving
r(p,q) = apq. (33)

In this case, it is clear that r(1,1) or r(2,2) is enough
to estimate the only needed parameter, namely the
correlation coefficient ¢, so that if r(1,1) =0 or
r(2,2) =0 it can be concluded that the two
processes are independent (¢ =0 and r =0 for
all p and ¢). In the general case, this is no longer
true: independence between the stochastic pro-
cesses x and y means that the GCE verifies
r(p,q) = 0 whatever the values of p and ¢, while
uncorrelation corresponds to r(1,1) =0. Fig. 6
thus shows the GCF, ¢(p,q), plotted in log-log
plot versus the time scale 7, for the grid-generated
turbulent velocity time series and the in vivo
fluorescence time series showed in Figs. 3 and 4,
respectively. As these time series have been
independently sampled, respectively in the labora-
tory and in the field, they represent an archetypical
example of two independent multifractal pro-
cesses. The very low values taken by the functions
¢(p,q) indicate the absence of any correlation
between the turbulent velocity and fluorescence
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Fig. 6. The Generalized Correlation Functions (GCF) c¢(p, q)
versus the time scale 7 in log-log plots, for the grid-generated
turbulent velocity time series and the in vivo fluorescence time
series showed in Figs. 3 and 4, respectively. The function ¢(p, q)
shown here have been estimated for a constant value of the
statistical order of moment ¢ of velocity fluctuations (¢ = 2),
and various values of the statistical order of moment p of in
vivo fluorescence (i.e., p = 1, 2 and 3, from bottom to top). The
slopes of the linear regression estimated over the scaling ranges
(dashed lines) provide estimates of the Generalized Correlation
Exponents (GCE) r(p, q).

fluctuations, AV, and AF,. This is confirmed and
specified by the related values of the function
r(p, q¢), which remain close to zero, whatever the
combinations of p and ¢ values (Fig. 7); see
Seuront and Schmitt (2005) for illustrations on the
different values taken by the function r(p, ¢) in the
presence and absence of correlation between two
multifractal fields.

4.2. Generalized correlation exponents in special
cases

The function c¢(p,q) and its related scaling
exponent r(p,q) can be used as an analysis tool
to study the couplings between two multifractal
fields x and y. To provide some basis for
discussion and interpretation of experimental
results, let us consider below first some limit cases,
before discussing some intensity-dependent cou-
plings and the resulting expression of the general-
ized correlation exponent.
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Fig. 7. The Generalized Correlation Exponents (GCE) r(p, ¢),
shown as a function of both p and ¢, which characterize
turbulent velocity and in vivo fluorescence fluctuations,
respectively. The function r(p,q) is estimated here between
independently sampled time series of turbulent velocity and
fluorescence, respectively in the laboratory and in the field.

If x and y are independent, as what was said
above, r(p,q) = 0. On the other hand, in case of
perfect proportionality x = Ky, where K is a
constant, or for ‘“random proportionality”
x = Ky, where k is a random variable independent
on y, it is readily seen that

rp,q) ={y(p)+{y(q) — {y(p + ). (34)

In particular, one may note that r(p,¢) >0 due to
the convexity of the scaling functions {(p). This
relation can be directly tested to verify the
proportionality hypothesis. Furthermore, the
shape of the surface obtained is symmetric in the
p—q plane. In this specific case, the function r(p, q)
has thus the desirable advantage to reduce
considerably the number of data points, i.e.
r(p, q) values, needed to understand the relation-
ship between the fields x and y.

Other simple situations may be considered: if
x = Ky with 5>0 and K constant, or if x = x)”
with k¥ random and independent of y, then one has

r(p,q) = Cy(bp) + Cy(q) — Ly (bp + 9). (35)

r(p,q) in Eq. (35) is still positive, but no more
symmetric in the p—¢q plane; it is symmetric in the
bp—q plane. In this framework, the value of b may

be first estimated as the positive value such that
S(p,0) = S(0, bp). (36)

Using the value estimated this way, this frame-
work is then tested by verifying that r(p/b,q) is
indeed symmetric in the p—¢q plane. More generally
speaking, the more r(p, ¢) is positive, the more the
x=AX;, and y =AY, are dependent random
variables.

The main advantages of this framework are the
following: it makes no assumptions about the
spectrum or the distribution of data sets; it takes
fully into account their intrinsic multiscaling
properties in the inertial subrange scales, as well
as in any range of scales characterized by a
multiscaling behavior; and it may be used to
characterize the nature of couplings between two
fields.

5. Discussion and conclusions

Historically, intermittency has seldom been
described as such in marine sciences. In physical
oceanography, intermittency has mainly been
discussed in terms of its consequences on sam-
pling, data processing and statistics (Baker and
Gibson, 1987; Bohle-Carbonel, 1992; Yamazaki,
1990), and is even not referred to in specialized
monographs (e.g., Pond and Pickard, 1983; Mann
and Lazier, 1991; Summerhayes and Thorpe, 1996;
Kantha and Clayson, 2000). The situation is
similar in marine ecology where turbulent inter-
mittency and its potential effects often are not
discussed. Let us mention however that turbulence
intermittency has been considered as irrelevant to
marine life. We may cite Estrada and Berdalet
(1997): intermittent events “should be very intense
from the point of view of plankton, but calculations
show that their probability is small”. Jiménez (1997)
is more precise, considering that intermittent
bursts “must certainly be spectacular events from
the point of view of plankton, comparable to the
passing of a tornado at our scale, and probably with
similar consequences on the individual involved” but
that “they are sufficiently rare that they can be
neglected in most calculations” .
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In biological oceanography, patchiness, varia-
bility, heterogeneity and intermittency (see Seur-
ont and Lagadeuc, 200la for terminological
details) has been a major issue since the early
studies (e.g., Haeckel, 1891; Hardy, 1936; Cassie,
1959a, b; Cushing, 1962; Cassie, 1963; Wiebe,
1970; Fasham, 1978). Since then, instruments
designed to run underway and measure changes
in plankton abundance and composition have
become common and are continuously improved,
e.g., fluorometers (Wesson et al., 1999; Franks and
Jaffe, 2001; Leboulanger et al., 2002), video
plankton recorders (Lenz et al., 1995; Tiselius,
1998), high-frequency acoustics (Coyle et al., 1998;
Warren et al., 2002; Wiebe et al., 2002), contin-
uous plankton recorders (Batten et al., 2003; Johns
et al., 2003), and small-scale sampling systems
(Waters and Mitchell, 2002; Waters et al., 2003).
Uneven plankton distributions have subsequently
been widely described (e.g., Mackas and Boyd,
1979; Denman and Powell, 1984; Bennett and
Denman, 1985; Mackas et al., 1985; Davis et al.,
1991; Daly and Smith, 1993; Currie et al., 1998),
but intermittency, as defined in the present work,
has seldom been quantified. There is now more
and more experimental evidence of the intermit-
tent and multifractal nature of plankton distribu-
tions (Pascual et al., 1995; Seuront et al., 1996a, b,
1999, 2002; Seuront and Lagadeuc, 2001b; Currie,
2001; Lovejoy et al., 2001; Seuront and Schmitt,
2004). Potential practical applications to marine
ecosystems have nevertheless been ignored until
recently (Seuront, 2001; Seuront et al., 2001;
Yamazaki et al., 2001). Theoretical considerations
based upon detailed (multifractal) descriptions of
the intermittency of turbulent kinetic energy
dissipation rates and phytoplankton cells distribu-
tions nevertheless suggests that taking into ac-
count intermittency for critical processes such as
predator—prey encounter rates, nutrient fluxes
around phytoplankton cells, phytoplankton coa-
gulation and the related size of phytoplankton
aggregates and vertical fluxes has consequences
far from being negligible (Seuront, 2001; Seuront
et al., 2001).

We expect the theoretical framework presented
here to provide additional valuable insights into
our understanding of intermittency and its inte-

gration into ecologically relevant processes. As the
Generalized Correlation Functions and Exponents
provide an objective way to investigate the
potential couplings existing between two simulta-
neously sampled intermittent parameters, it would
help to reveal experimentally some of the phenom-
enology behind observed plankton distributions.
In particular, previous qualitative results showing
that large phytoplankton fluctuations are linked,
under strong enough turbulent conditions, to weak
temperature gradients and vice versa (Desiderio
et al., 1993; Wolk et al., 2002), could be confirmed
and quantified in the GCF/GCE framework. As
joint distributions are very hard to come by and
have mainly been studied in a covariance frame-
work (e.g., Denman and Platt, 1975; Denman,
1976; Denman and Abbott, 1988, 1994), it is
believed that the combination of such novel
techniques and the development of integrated
instrument platform for coupled biological and
physical measurements (e.g., Wiebe et al., 2002;
Wolk et al., 2002) would provide new insights into
the nature of biophysical couplings. The journey
of intermittency to elucidate oceanic processes
complexity is still in its infancy.
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