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22.1 Introduction

 

Animals typically search for food, hosts, and sexual partners and avoid predators in complex, spatially and
temporally structured environments. The resulting movements have implications for the optimization of
food search patterns, energy investment, habitat selection, and territorial and social behaviors (Morse, 1980;
Pyke, 1984; Stevens and Krebs, 1986; Bell, 1991; Turchin, 1998; Boinski and Garber, 2000). In
zooplankton ecology, examples come from the wide spectrum of swimming behaviors related to the
species (Tiselius and Jonsson, 1990), the age (Coughlin et al.,

 

 

 

1992; van Duren and Videler, 1995; Fisher
et al.,

 

 

 

2000; Titelman, 2001), the prey density (Tiselius, 1992; Bundy et al.,

 

 

 

1993; Dowling et al.,

 

 

 

2000),
the presence of a predator or a conspecific (van Duren and Videler, 1996; Tiselius et al.,

 

 

 

1997; Titelman,
2001), the sex of individuals (van Duren and Videler, 1995; Brewer, 1998; Strickler, 1998), the informa-
tion imparted into the surrounding water by a swimming animal (Yen and Strickler, 1996; Gries et al.,
1999), including both chemical (Yen et al.,

 

 

 

1998; Weissburg et al.,

 

 

 

1998) and hydromechanical (Costello
et al.,

 

 

 

1990; Marrasé et al.,

 

 

 

1990; Hwang and Strickler, 1994; Hwang et al.,

 

 

 

1994; Brewer, 1998) stimuli.
Moreover, considering that environmental complexity affects the movement patterns of animals (e.g

 

.

 

,

 

 

 

Wiens
and Milne, 1989; Boinski and Garber, 2000) and the recent advances demonstrating the heterogeneous
nature of physical and biological patterns and processes at scales relevant to individual organisms
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(Mitchell and Fuhrman, 1989; Squires and Yamazaki, 1995; Cowles et al.,

 

 

 

1998; Seuront et al.,

 

 

 

1996a, b,
1999), there is a genuine need to establish a reference framework that will link pure behavioral obser-
vations, the qualitative and quantitative nature of environment complexity, and zooplankton tropho-
dynamic hypotheses (Turchin, 1991; Keiyu et al.,

 

 

 

1994; Seuront, 2001; Seuront et al.,

 

 

 

2001; Schmitt
and Seuront, 2001, 2002).

Despite the growing number of studies, analyses of the movement patterns of aquatic organisms are
still far less common than of terrestrial organisms, primarily because of the difficulty in obtaining accurate
records of the displacement of aquatic organisms, which unlike terrestrial organisms, move through a
volume and therefore require systems capable of recording three-dimensional (3D) data. This is a
nontrivial problem, and has resulted in many investigations of zooplankton behavior recording only two-
dimensional (2D) swimming paths. Moreover, even using video systems capable of recording 3D data,
there are still problems of scale resulting from the small size of planktonic organisms. Gathering
3D coordinates for zooplankton involves a trade-off between resolution and extent, typically presenting
researchers with two alternatives in the collection of data: (1) high spatial resolution, but for short
duration, or (2) longer time series, but at low spatial resolution. To our knowledge, the methods used in
only four studies have permitted the collection of 3D swimming data at both high spatial resolution and
for long periods (Coughlin et al.,

 

 

 

1992; Bundy et al.,

 

 

 

1993; Brewer, 1996; Schmitt and Seuront, 2001).
Even when the collection of 3D data is possible, behavioral ecologists face another, more fundamental,

problem 

 



 

 the accurate quantitative description of animal paths. The difficulty in quantifying animal
movement results from the fact that most of the quantitative metrics commonly applied in behavioral
studies, e.g., path length, turning angle, turning rate, and net to gross displacement ratio (NGDR), are
scale dependent. That is, the metrics will take on different values depending on the physical or temporal
scale at which they are measured. This problem was recognized by Dodson et al. (1997), who reported
that 

 

Daphnia

 

 swimming speeds were typically two to four times greater when measured at 30 Hz than
when measured at 1 Hz. Although they acknowledged the scale dependence of their metrics, they did
not propose an objective way to deal with this dilemma. The scale dependence inherent in most metrics
results in there being no single scale at which swimming paths can be unambiguously described. Thus,
there is no single scale at which swimming behaviors can be compared without leading to arbitrary,
potentially spurious conclusions. Furthermore, because individual studies typically record behaviors at
different temporal resolutions, (i.e., ranging from 0.01 to 50 Hz; Table 22.1), their results cannot be
accurately compared. Despite the clear difficulties associated with scale-dependent metrics, as far as we
know only six studies have analyzed plankton swimming behavior in a scale-independent framework
(Coughlin et al.,

 

 

 

1992; Bundy et al.,

 

 

 

1993; Brewer, 1996; Jonsson and Johansson, 1997; Dowling et al.,
2000; Schmitt and Seuront, 2001).

Mandelbrot (1977, 1983) introduced the term 

 

fractal

 

 to characterize spatial or temporal phenomena
that are continuous but, because of their complexity, not differentiable. Unlike more familiar Euclidean
constructs, every attempt to split a fractal into smaller pieces results in the resolution of more structure.
As a consequence, in fractal constructs the detail is similar to the whole; i.e., there is no characteristic
scale. Fractal objects and processes are therefore said to display “self-invariant” properties (e.g.,

 

 

 

Hastings
and Sugihara, 1993), and can be further defined as being either “self-similar” or “self-affine.” Self-similar
objects are isotropic (the same in all three spatial dimensions) upon rescaling, whereas rescaling of self-
affine objects is direction dependent (anisotropic). Thus, a trace of zooplankton motion in 3D space is
self-similar, whereas a 2D trace, such as the plot of the 

 

x

 

-coordinate of an organism’s movement as a
function of time, is self-affine (for more details see Schroeder, 1991). Regardless, fractal analysis presents
a new way of addressing questions about structures and scales in ecological systems. In particular, self-
invariant patterns and processes can be described by a (non-integer) fractal dimension, which can be
viewed as a measure of complexity, or as an index of the scale dependence. The fractal dimension, 

 

D

 

,
characterizes a range of scales over which similar patterns and/or processes are operating across that
range of scales. However, if there exists a critical scale beyond which a further increase results in a shift
in the fractal dimension, or a loss of fractal structure, this may define a transition zone where the
environmental properties or constraints acting upon a given system are probably changing rapidly,
between two different hierarchical levels in which different patterns and/or processes are operating
(Frontier, 1987; Seuront and Lagadeuc, 1997).
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TABLE 22.1

 

Literature Survey of Zooplankton Behavioral Survey, Arranged in Chronological Order

 

Organism View Variable Metrics [temporal scale] Ref.

 

Daphnia 2D, side Relative light 
intensity

Speed, position in the water column [–] Ringelberg (1964)

Cyclops 2D, side Light Speed [0.1 Hz] Strickler (1970)
Daphnia 2D, top Polarized light Speed, NGDR, IDT, turning rate [30 Hz] Wilson and Greaves 

(1979)
Mesocyclops 2D, top Prey patches Speed, loops/min [0.016 Hz] Williamson (1981)
Daphnia 3D Angular light 

distribution
Speed, NGDR [–] Buchanan et al. (1982)

Daphnia 2D, side Food concentration Speed [0.1 Hz] Porter et al. (1982)
Acartia 2D, top Bioluminescent 

dinoflagellates
Speed, NGDR, bursts [15 Hz] Buskey et al. (1983)

Pseudocalanus 2D, top Food concentration 
and odors

Speed, NGDR, bursts, pauses [15 Hz] Buskey (1984)

Diaptomus 2D, top Predators and 
competitors

Speed, NGDR, time between jumps [30 Hz] Wong et al. (1986)

Daphnia 3D Food concentration Speed, turning rate, ground covered [30 Hz] Young and Getty 
(1987)

Favella 2D, side Food patches Speed, NGDR, turning rate [15 Hz] Buskey and Stoecker 
(1988)

Thysanoessa 3D Algal patches Speed, NGDR, bursts, % sinking [2 Hz] Price (1989)
Six calanoids 2D, side Light, food type Speed, foraging mode [12.5 Hz] Tiselius and Jonsson 

(1990)
Polyphemu 2D, top Predator–prey 

interaction
Speed, turning rate, meander [1 Hz] Young and Taylor 

(1990)
Bosmina 2D, top Predator–prey 

interaction
Speed, turning rate, meander [1 Hz] Young and Taylor 

(1990)
Daphnia 3D Body size Speed, displacement angle, NGDR, stroke 

velocity, sinking speed [30 Hz]
Dodson and 
Ramcharan (1991)

Diaptomus 3D Predator Speed, jump length, angle of motion [20 Hz] Ramcharan and 
Sprules (1991)

Diaptomus 2D, top Conspecific Speed, NGDR [–] Van Leeuwen and Maly 
(1991)

Acartia 2D, side Turbulence Speed, foraging activity and behavior [25 Hz] Saiz and Alcaraz 
(1992)

Amphiprion 3D Food concentration Speed, NGDR, turning angles, 

 

fractal 
dimension

 

 [10–15 Hz]
Coughlin et al. (1992)

Acartia 2D, side Food patches Speed, vertical position, jump frequency, 
NGDR [0.1 Hz]

Tiselius (1992)

Centropages 3D Food concentration Speed, NGDR, Realized Encounter Volume, 
i.e., 

 

fractal dimension

 

 [30 Hz]
Bundy et al. (1993)

Various species 2D, side Species Speed, NGDR, rate of change in direction 
[15–30 Hz]

Buskey et al. (1993)

Diaptomus 2D, top Gravid females Speed, NGDR [–] Maly et al. (1994)
Acartia 3D Food, turbulence Speed, behavioral observations [30 Hz] Saiz (1994)
Brachionus 2D, top Toxic stress Speed, sinuosity, behavioral observations [25 Hz] Charoy et al. (1995)
Temora 3D Food concentration Speed, NGDR, behavioral observations [50 Hz] Van Duren and Videler 

(1995)
Dioithona 2D, side Light, water flow Speed, rate of change in directions [30 Hz] Buskey et al. (1996)
Oithona 2D Developmental 

stage
Speed, behavioral observations [30Hz] Paffenhöfer et al. 

(1996)
Temora 2D, 3D Predators, 

conspecific
Speed, NGDR, behavioral observations [50Hz] Van Duren and Videler 

(1996)
Daphnia 3D Food 

concentration, 
light, temperature

Speed, turning angle, turning rate, NGDR, 

 

fractal dimension 

 

[10Hz]
Brewer (1996)

Daphnia 2D, top Food concentration Speed [–] Larsson and Kleiven 
(1996)
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Because of its scale-independent nature, in recent years fractal geometry has been used to investigate
a surprisingly varied set of phenomena including electrochemical deposition (Mach et al.,

 

 

 

1994), the
structure of physiological systems such as bronchial trees (Shlesinger and West, 1991) and Hiss–Purkinje
cardiac conduction (Goldberger et al.,

 

 

 

1985), DNA sequences (Provata and Almirantis, 2000), the growth
of bacterial colonies (Tang et al.,

 

 

 

2001), taxonomic schemes (Burlando, 1990, 1993), and clusters of
galaxies and stars (Wu et al.,

 

 

 

1999; Pietronero and Labini, 2000). In addition, Frontier (1987), Sugihara
and May (1990), and Seuront (1998) describe numerous possible ecological applications of fractals.
Fractals have been used to describe habitat complexity (Bradbury and Reichelt, 1983; Bradbury et al.,
1984; Gee and Warwick, 1994a, b), species diversity (Frontier, 1985, 1994), the shape of marine particles
(Li et al.,

 

 

 

1998), growth processes of benthic fauna (Abraham, 2001), the space–time distribution of
phytoplankton biomass (Seuront and Lagadeuc, 1997, 1998), movements of marine invertebrates
(Erlandson and Kostylev, 1995) or estuarine vertebrates (Dowling et al.,

 

 

 

2000), movements of terrestrial
invertebrates (Gautestad and Mysterud, 1993; Wiens et al.,

 

 

 

1995), and the search paths of small
(Cody, 1971; Pyke, 1981) and large (Siniff and Jenssen, 1969; Van Ballemberghe, 1983; Bascompte and
Vilà, 1997) terrestrial vertebrates.

Yet even as the use of fractal dimensions has increased, their reliability for use in the quantification
of animal paths has recently been questioned. Turchin (1996, 1998) argued on the basis of a simulated
path generated by a correlated random walk that fractal dimensions are themselves scale dependent,
varying continuously as a function of scale. Similarly, Tsonis and Elsner (1995) emphasized that scaling
regions are subjectively estimated and are often the result of the generic property of the quantity to
increase or decrease monotonically as the scale approaches zero, regardless of the geometry of the object
(see, e.g., Davenport, Chapter 16, this volume). As a consequence, they proposed a standard procedure
for dealing with fractal dimension estimates. Additionally, considering that many analyses of 3D behavior
are carried out using 2D data (Table 22.1), we address here the question of whether fractal dimensions
estimated from 2D trajectories can be reliably used to estimate the 3D structure of swimming paths.

 

TABLE 22.1 (continued)

 

Literature Survey of Zooplankton Behavioral Survey, Arranged in Chronological Order

 

Organism View Variable Metrics [temporal scale] Ref.

 

Daphnia 3D Light, food 
concentration, 
vessel size

Speed, turning angle [30 Hz] Dodson et al. (1997)

Acartia 2D Predators Encounter rates [–] Tiselius et al. (1997)
Euplotes 2D, top Food patches Speed, motility, 

 

fractal dimension

 

 [–] Jonsson and Johansson 
(1997)

Protoperidinium 2D, top Food type Speed, rate of change of direction, behavioral 
observations [15 Hz]

Buskey (1997)

Centropages 2D Turbulence, food 
concentration

% swimming, swimming behavior, jumps [25 Hz] Caparroy et al. (1998)

Cyclops 3D Conspecific Speed, distance between male and female [60 Hz] Strickler (1998)
Daphnia 3D Predators Speed, turning angle, behavioral observations 

[30 Hz]
O’Keefe et al. (1998)

Lates calcarifers 2D, top Food concentration Pause duration, distance traveled between 
pauses, travel duration, developmental stage,

 

fractal dimension

 

 [25 Hz]

Dowling et al. (2000)
    

Pomacentrus 1D, side Age Speed [–] Fisher et al. (2000)
Sphaeramia 1D, side Age Speed [–] Fisher et al. (2000)
Amphiprion 1D, side Age Speed [–] Fisher et al. (2000)
Acartia 2D, side Predator Speed, reaction distance, jumps [60 Hz] Suchman (2000)
Acartia 3D, side Age, predators Speed, jump directionality, frequency, length, 

and speed [–]
Titelman (2001)

Temora 3D, side Age, predators Speed, jump directionality, frequency, length, 
and speed [–]

Titelman (2001)

Temora 3D Female

 

Multifractal parameters

 

 [12.5Hz] Schmitt and Seuront 
(2001, 2002)

 

Note:

 

 Values in parentheses are the temporal scale at which the listed metrics are calculated in each study.
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This comes into question for two conceptually distinct reasons. First, following Mandelbrot (1983), the
lower (

 

D

 

f

 

 +1) and upper (2

 

D

 

f

 

) limits of the 3D fractal dimension can be estimated from a 2D of 

 

D

 

f

 

characterizing the same pattern. However, the broadness of the resulting limits (e.g.,

 

 

 

if the limits are
2.4 to 2.8) and evidence suggesting that extrapolation to higher dimensions (e.g., from 2D to 3D) is
invalid (Roy et al.,

 

 

 

1987; Huang and Turcotte, 1989) restrict the reliability of this approach. Second,
while swimming organisms move in essence in three dimensions, nothing 

 

a priori 

 

ensures the isotropy
of their paths. Anisotropy in swimming can be generated by specific food patterns via patch exploitation
strategies (Leising and Franks, 2000; Leising, 2001; Seuront et al.,

 

 

 

2001), prey switching behavior
(Kiørboe et al.,

 

 

 

1996; Caparroy et al.,

 

 

 

1998), species-specific behavior (Tiselius and Jonsson, 1990), or
the effect of gravity (Strickler, 1982). Path isotropy is nevertheless an absolute requirement for extrap-
olating 2D to 3D behavior, and therefore must be carefully checked.

Given the increasing use of fractal dimensions in ecology in light of continuing questions regarding
their utility, the aims of this chapter are to (1) demonstrate the unreliability of scale-dependent metrics
and highlight the advantages of a scale-independent framework to characterize plankton swimming
behavior, (2) address, in detail, the proposed limitations of fractal analysis, and (3) introduce an efficient
statistical framework that will ensure the existence of a scaling range and the subsequent robustness of
fractal dimension estimates. A set of high-resolution 3D trajectories of a common freshwater zooplankter,

 

Daphnia pulex

 

, are used throughout the chapter as ecological examples to illustrate the concepts presented.

 

22.2 Recording Swimming Paths

 

Gathering 3D coordinates remains the first (and major) limitation for 

 

in vitro 

 

zooplankton behavioral
studies because it entails collection of 3D swimming data both at high spatial resolution and for extended
periods of time. From the few studies available in the literature (see, e.g., Coughlin et al.,

 

 

 

1992; Bundy
et al.,

 

 

 

1993; Schmitt and Seuront, 2001), it can nevertheless be seen that the methods used are concep-
tually similar to the one introduced below.

 

22.2.1 Culture of 

 

Daphnia

 

 and Algae

 

A clone of 

 

D. pulex

 

 was cultured in aged tap water under cool white fluorescent bulbs, in a 16/8 light–dark
cycle. The cultures were maintained at the experimental temperature (20˚C) and fed every day with a
1:1 mixture of the green algae 

 

Ankistrodesmus

 

 sp. and 

 

Scenedesmus

 

 sp. at a final concentration of about
5 

 

×

 

 10

 

5

 

 cells ml

 

–1

 

. Algae were grown in multiple 250 ml batch cultures under cool white fluorescent
bulbs, in an 18/6 light–dark cycle, at 20˚C, in Bold’s Basal Medium.

 

22.2.2 Recording Three-Dimensional Swimming Behavior

 

All paths analyzed in this chapter are the movements of solitary 

 

D. pulex

 

 swimming in the 5-l (18 

 

×

 

 18 

 

×

 

15.5 cm high) Plexiglas recording vessel of the CritterSpy

 



 

, a high-resolution 3D recording system.
All recordings were made with animals swimming in an algal concentration of 5 

 

×

 

 10

 

4

 

 cells ml

 

–1

 

, which
is an intermediate food concentration, well below 

 

D. pulex

 

’s incipient limiting concentration (Lampert,
1987). The test chamber was illuminated with a diffused, fiber-optic light placed 0.5 m directly overhead
that resulted in an illumination of about 12 

 

µ

 

Em

 

—2 

 

s

 

–1

 

 in the vessel, approximately equal to full daylight.
At least 1 h prior to experiments, adult, gravid females 2.1 ± 0.2 (mm) were transferred from their
culturing vessels and acclimated to experimental light and food conditions in holding vessels. A single
animal was then transferred from its holding vessel to the recording chamber with a large-bore pipette
and allowed to acclimate for at least 10 min before recording began.

The CritterSpy uses a Schleiren optical system consisting of a collimated red laser beam (

 

λ 

 

= 623 nm)
which serves as the light source for two orthogonally mounted video cameras, two frame number
generators, two 20-in. video monitors, and two VHS videocassette recorders; see Strickler (1985) and
Bundy et al. (1993) for further details. This system simultaneously records orthogonal front (XZ) and
side (YZ) views of the experimental chamber as dark field images. To run the system, two operators
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view the camera images in real time. As the animal swam away from the center of the other camera’s
view (marked with crosshairs on the monitors), one operator used a trackball (X and Z dimensions) and
the other a rotating cylinder (Y dimension) to bring the animal back into the center of both views. The
actual recentering of the image was achieved via three computer-controlled linear positioning motors
(one for each axis) that moved the entire optical system in response to the operators’ input. A computer
recorded the motor movements necessary to keep the animal centered in the two views as X, Y, and Z
coordinates. Because the computer only recorded coordinates when the trackball or cylinder were moved,
the coordinates were recorded at an uneven sampling rate (ranging from about 5 to 15 Hz). Paths were
then interpolated to produce an even time interval (10 Hz) between successive position measurements.
The 10 Hz rate is rapid enough that coordinates recorded at that temporal scale are the result of very
small movements of the crosshairs corresponding to 

 

Daphnia

 

’s characteristic hop-and-sink behavior.
Each individual 

 

Daphnia

 

 was recorded swimming for at least 30 min, after which the videotapes were
reviewed and valid segments were identified for analysis. Valid segments consisted of video in which the
animals were swimming freely, at least two body lengths away from any of the chamber’s walls or the
surface, and the animals were always within one half body length of the crosshairs in the center of the
video monitors. To ensure that there would be a significant range of scales in each path, we only used
paths that were at least 30 s in duration. After identifying valid sequences, the frame numbers imprinted
on the video were used to isolate the corresponding time interval from the 3D coordinate data stored on
the computer. These time series of coordinates formed the 3D trajectories used in our analysis (Figure 22.1).

 

22.3 Characterizing Swimming Paths

 

Movement paths may be characterized by a variety of measures (Figure 22.2; Table 22.1), including:
path length (the total distance traveled, or gross displacement), move length (the distance traveled
between consecutive points in time), move duration (time interval between successive pauses, as well
as between successive spatial points), speed (move length divided by move duration), turning angle
(the difference in direction between two successive moves), turning rate (turning angle divided by move
duration), net displacement (the linear distance between starting and ending point, often used as a metric
when making comparisons with diffusion or correlated random walk models; e.g., Kareiva and Shigesada,
1983; McCulloch and Cain, 1989; Turchin, 1991; Johnson et al.,

 

 

 

1992a), NGDR (net to gross displace-
ment ratio; Wilson and Greaves, 1979), and fractal dimension. For paths recorded at fixed time intervals,
move duration is a constant. As discussed above, the values of all the metrics except fractal dimension
(see below) are implicitly a function of their measurement scale (Figure 22.2). The scale dependence of
these ratio metrics, i.e., the path length and the turning angle (Figure 22.3), implies that there is no
single scale at which swimming paths can be unambiguously described.

 

FIGURE 22.1

 

Example of a 3D pathway of 

 

D. pulex

 

. Path is shown to scale in the CritterSpy’s 5-l recording vessel.
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22.3.1 Swimming Path and Fractal Dimension

 

Fractal analysis of animal behavior is based on the premise that the fractal dimension can serve as a
scale-independent descriptor of the path an organism takes as it moves. The philosophy behind fractals
is as follows: if an organism moves along a completely linear path, then the actual distance traveled, 

 

L

 

,
equals the displacement between the start and the finish, 

 

δ

 

. The relationship between these two variables
is linear. In other words, if we assume a power law relating 

 

L 

 

to 

 

δ

 

, i.e., 

 

L

 

D

 

 = 

 

δ

 

, then the exponent 

 

D

 

 = 1.
According to this power law, if the path deviates from linearity, that is, becomes tortuous, the exponent
will then be greater than 1. In the extreme example of “curviness,” i.e., for the case of Brownian motion,

 

D

 

 = 2 (Mandelbrot, 1983). It appears that 

 

D

 

 provides a measure of the path “tortuosity,” or “complexity,”
with the extreme cases delineated by linear and Brownian movement, respectively, and real-life cases
expected to fall between these extremes of 

 

D

 

 = 1 and 

 

D

 

 = 2.
We reiterate Turchin et al.’s (1991) position on the importance of using individual organisms, and not

steps within an individual path, as statistical replicates. Analyses performed on the above measures are
termed second-order statistics because they collapse information from many observations of an individual
into a single measure (Batschelet, 1981). In addition, we suggest that strict limits be placed on the
minimum number of moves used to obtain a statistic for a given trajectory. Specifically, the minimum
number of observed moves should set the number of observed moves from which statistics are gathered
from any of the paths.

 

22.3.2 Measuring Fractal Dimensions

 

Practical approaches to measuring 

 

D

 

 using real data have not yet been standardized (e.g., Hastings and
Sugihara, 1993). Some investigators plot the net squared displacement as a function of time (Johnson
et al.,

 

 

 

1992a), a practice that has a solid basis in random walk theory (see, e.g., Tarafdar et al.,

 

 

 

2001).
Others construct plots of the apparent path length vs. ruler length (With, 1994a). Here, as recommended
by Fielding (1992) and Hastings and Sugihara (1993) to ensure the reliability of the fractal dimension
estimates, we used two different, but conceptually similar, methods.

 

FIGURE 22.2

 

Illustration of the different metrics used in characterizing movement pathways. The mean displacement is
the mean of distances 

 

D

 

i

 

 traveled per time interval, the net displacement ND is the straight-line distance between the initial
and final locations, and the growth displacement is the sum of the distances 

 

D

 

i

 

. The mean turning angle is the trigonometric
mean of angles 

 

θ

 

i

 

 formed by changes in direction between steps.
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22.3.2.1 Compass Method — Using this procedure, the fractal dimension Dc is estimated by
measuring the length L of a path at various scale values δ. The procedure is analogous to moving a set
of dividers (like a drawing compass) of fixed length δ along the path (Figure 22.4A). The estimated
length of the path is the product of N (number of compass dividers required to “cover” the object) and
the scale factor δ. The number of dividers necessary to cover the object then increases with decreasing
measurement scale, giving rise to the power law relationship:

(22.1)

where δ is the measurement scale, L(δ) is the measured length of the path, L(δ) = Nδ, and k1 is a constant.
Practically, the fractal dimension Dc is estimated from the slope m of the log–log plot of L(δ) vs. δ for
various values of δ, where

(22.2)

Hereafter, the fractal dimension Dc will be referred to as the “compass dimension.”

FIGURE 22.3 Scale dependence of path length (A) and turning angle (B) obtained from a 3D swimming path of D. pulex.
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22.3.2.2 Box-Counting Method — This procedure, like the compass method, can be used to
measure the fractal dimension of a curve (Longley and Batty, 1989). In addition, it can be applied to
overlapping curves (Peitgen et al., 1992) and structures lacking strict self-similar properties such as
vegetation (Morse et al., 1985). Formally, the method finds the “λ cover” of the object, i.e., the number
of pixels of length λ (or circles of radius λ) required to cover the object (Voss, 1988). A more practical
alternative is to superimpose a regular grid of pixels of length λ on the object and count the number of
“occupied” pixels (Figure 22.4B). This procedure is repeated using different values of λ. The volume
occupied by a path is then estimated with a series of counting boxes spanning a range of volumes down
to some small fraction of the entire volume (Figure 22.4B). The number of occupied boxes increases
with decreasing box size, leading to the following power law relationship (Loehle, 1990): 

 (22.3)

where λ is the box size, N(λ) is the number of boxes occupied by the path, k2 is a constant, and Db is
the box-counting fractal dimension, referred to hereafter as the “box dimension.” Db is estimated from
the slope of the linear trend of the log–log plot of N(λ) vs. λ.

The fractal dimension of a data set is thus measured by making sure that the data have large scale-
independent characteristics.

22.4 Testing the Robustness of Fractal Dimension Estimates

22.4.1 On the Scale Dependence of Fractal Dimensions

Generally, the key assumption regarding the fractal dimension is that it is a scale-independent parameter.
Strictly speaking, this means that, in a particular environment, if we calculate D for the swimming behavior
of an organism based on paths that are several centimeters long, we will arrive at the same value of D
for paths measured at a scale of meters to hundreds of meters. This is central to one of the main issues
faced by landscape ecologists; understanding how to meaningfully extrapolate ecological information
across spatial scales (Gardner et al., 1989; Turner and Gardner, 1991). This scale-independence issue has
been addressed in detail by Turchin (1996) who argued, based on a simulated path of 10,000 steps
generated by a correlated random walk, that the fractal dimension, rather than being scale invariant,
instead varies in a curvilinear fashion from D = 1 at very small spatial scales, to D = 2 at very large
spatial scales (see also Davenport, Chapter 16, this volume; his Figure 16.1). However, we propose that
these two features are simply artifacts of the algorithms used to estimate dimensions and can be explained
accordingly. Because of the limited number of data points as the measurement scale approaches the
resolution of the data, the path becomes more and more linear, and thus D → 1. Alternatively, at larger
scales most, if not all, of the available boxes have a high probability of including a portion of the path,

FIGURE 22.4 2D illustration of the compass (A) and the box-counting (B) methods used to describe swimming path
complexity with fractal dimension. Two steps of the analyses are shown, using two different characteristic scales: the divider
lengths δ1 and δ2, and the box sizes λ1, λ2, and λ3.

N k Db( )λ λ= −
2
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and thus D → 2. Such behavior is also found in a log–log plot of L(δ) vs. δ obtained from a 3D path
of D. pulex (Figure 22.5). This path exhibits the same transition from D = 1 at small scales to D = 2 at
larger scales. One must nevertheless note here that the swimming path of D. pulex clearly exhibits a
linear (i.e., fractal) behavior over intermediate scales, contrary to the Turchin’s path generated by a
correlated random walk. Moreover, we raised here against Turchin’s arguments that while both random
walks and correlated random walks have been widely used to model animal behavior (e.g., Johnson and
Milne, 1992; Tiselius et al., 1993; Wiens et al., 1993; Gautestad and Mysterud, 1993; Keiyu et al., 1994;
Turchin, 1996), they mimic animal paths very poorly (Bergman et al., 2000) because they incorporate
an unrealistic arbitrary distribution for the angles between successive steps. A reasonable alternative
might be the inclusion of a turning angle distribution, which enables the explicit computation of the
effect of persistence in the direction of travel on the expected magnitude of net displacement of the
animal over time (e.g., Wu et al., 2000).

On the other hand, because different scales are often associated with different driving processes (e.g.,
Wiens, 1989; Seuront and Lagadeuc, 1997) the fractal dimension may have the desirable feature of being
constant only over a finite, instead of an infinite, range of measurement scales. It is then useful for
(1) identifying characteristic scales of variability and (2) comparing movements of organisms that may
respond, for example, to the patchy structure of their environment at different absolute scales. Changes
in the value of D with scale may indicate that a new set of environmental or behavioral processes is
controlling movement behavior (e.g., decreased influence of patch barriers or the effect of home range
behavior). Thus, the scale dependence of the fractal dimension over finite ranges of scales may carry
more information, both in terms of driving processes and sampling limitation, than its scale independence
over a hypothetical infinite range of scales. Alternatively, although the point of slope change may indicate
the operational scale of different generative processes, it may simply reflect the limited spatial resolution
of the data being analyzed (Hamilton et al., 1992; Kenkel and Walker, 1993; Gautestad and Mysterud,
1994). However, as previously shown from D. pulex trajectory, the effect of spatial resolution in the data
will manifest as gradual changes of the fractal dimensions toward D → 1 or D → 2, and cannot be
confused with a transition zone between two different scaling regions. What is critical for a proper
interpretation of fractal dimensions is then a way to identify the range of scales over which fractal
dimension is invariant.

22.4.2 Toward an Objective Identification of Scaling Range

When we are dealing with exact fractals (e.g., Koch snowflakes, the Sierpinski carpet; see Schroeder
[1991] for further details), there are no difficulties in calculating a fractal dimension. The log–log plots

FIGURE 22.5 Illustration of the behavior of L(δ) vs. δ in a log–log plot, obtained from a simulated path of 10,000 steps
resulting from a correlated random walk (thick dashed line), and from a 3D swimming path of D. pulex. Correlated random
walks have been simulated following Keiyu et al. (1994).
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are very linear and we always recover an a priori known result (Figure 22.6 and Figure 22.7). Conversely,
when we are dealing with objects or observables from nature whose properties are not known a priori
(e.g., coastlines, swimming paths), complications begin to arise. In such cases, many analyses have
implicitly made an assumption of linearity in the log–log plot (Crist et al., 1992; With, 1994a; Erlandson
and Kostylev, 1995; Dowling et al., 2000) and as a result, the scaling region was estimated subjectively.
However, as stated above, the apparent scaling can be simply the result of the generic property of the
quantity to increase or decrease monotonically as the scale goes to zero irrespective of the geometry of
the object. Consequently, one must question the validity of fitting a straight line over the whole range
of available scales. We therefore propose here an objective, statistically sound procedure for testing the
existence of scaling properties in animal paths.

First, consider a regression window of a varying width that ranges from a minimum of five data points
(the least number of data points to ensure the statistical relevance of a regression analysis) to the entire
data set. The smallest windows are slid along the entire data set at 0.01 cm (half body length of recorded
Daphnia individuals) increments, with the whole procedure iterated (n – 4) times, where n is the total
number of available data points. Within each window and for each width, we estimate the coefficient of

FIGURE 22.6 Illustration of the behavior of L(δ) vs. δ in a log–log plot (compass method), obtained from the “Koch
snowflake.” The Koch snowflake is a theoretical fractal object obtained by dividing a given segment into four subseg-
ments three times smaller between two steps of the generation process. The expected fractal dimension is then D =
log 4/log 3 = 1.261 (Mandelbrot, 1983), and cannot be regarded as being significantly different from the empirical compass
dimension Dc = 1.268 given in parentheses (p < 0.01). Note the unambiguous linearity of the behavior of log L(δ) vs. log δ
over the whole range of available scales, when compared with Figure 22.5.
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determination (r2) and the sum of the squared residuals (SSR) for the regression. Finally, we use the
values of δ (Equation 22.1) and λ (Equation 22.2), which maximize the coefficient of determination and
minimize the total sum of the squared residuals (Seuront and Lagadeuc, 1997) to define the scaling
range and to estimate the related fractal dimensions (Figure 22.8A). Hereafter, this first optimization
procedure will be referred to as the “R2 – SSR” criterion.

Second, one may note that Equations 22.1 and 22.3 can be rewritten, respectively, as

(22.4)

FIGURE 22.7 Illustration of the behavior of N(λ) vs. λ in a log–log plot (box-counting method), obtained from the
“Sierpinski carpet.” The Sierpinski carpet is a theoretical fractal object obtained by dividing a given square into eight
subsquares three times smaller between two steps of the generation process. The expected fractal dimension is then
D = log 8/log 3 = 1.892, and cannot be distinguished from the empirical box dimension Db = 1.901 given in parentheses
(p < 0.01). Note the unambiguous linearity of the behavior of log N(λ) vs. log λ over the whole range of available scales,
when compared with Figure 22.5.

d L d Dclog ( ) / logδ δ = −1
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and

(22.5)

Then if scaling exists, it will manifest as a zero-slope line in plots of both the differentials d log L(δ)/d log δ
vs. log δ, and d log N(λ)/d log λ vs. log λ (Figure 22.8B). Equations 22.4 and 22.5 can thus be rewritten as:

(22.6)

or equivalently , and

(22.7)

or . To ensure the statistical relevance of this procedure, we use a sliding
regression window similar to the one described in the R2 – SSR procedure. The significance of the
differences between the slope of each regression and the expected zero-slope line is directly tested
using standard statistical analysis; see Zar (1996). The scaling range will then be defined as the scales
that satisfy both Equations 22.6 and 22.7, and the R2 – SSR criterion. Finally the intersection of the
range of scales exhibiting a zero-slope line with the y-axis provides the compass (see Equation 22.4)
and box-counting (see Equation 22.5) dimensions. Hereafter this procedure will be referred to as the
“zero-slope” criterion.

Because these procedures may lead to slightly different results in the estimates of the scaling ranges
and the related fractal dimensions, we strongly recommend the inclusion in the scaling range of only the
scales for which the above two criteria are fully satisfied. In that way, we ensure that the plateau exhibited
by the data points in Figure 22.8B is indeed a manifestation of scaling, and not the result of a random
nonfractal structure. The implementation of the “R2 – SSR” and “zero-slope” procedures is illustrated
using the 3D swimming paths of D. pulex (Figure 22.9). It can here be seen that the R2 – SSR and the
zero-slope criteria lead to slight differences in the estimated scaling ranges (Figure 22.9A, B). In particular,
the largest limits of the scaling range are systematically larger (p < 0.05,Wilcoxon–Mann–Whitney
U-test) when estimated using the zero-slope optimization criterion (Figure 22.9A). The estimates of
their lowest limits (Figure 22.9B) cannot be statistically distinguished (p > 0.05). These differences did
not imply any significant discrepancies between the related compass and box dimensions (Figure 22.9C).
Hereafter, these two optimization criteria will nevertheless be systematically used to estimate both compass

FIGURE 22.8 Illustration of the R2 – SSR (A) and the zero-slope (B) optimization criteria from a 3D swimming pathway
of D. pulex. In both cases, the shaded areas indicate the scaling ranges. The dotted lines indicate the best regression fit
obtained using the R2 – SSR criterion (A), and the 5% confidence interval of the flat behavior of d log L(δ)/d log δ vs. log δ
(dashed line) found using the zero-slope criterion (B).

d N d Dblog ( ) / logλ λ = −

d d L d dlog ( ) / log / logδ δ δ[ ] = 0

d L d2 2 0log ( ) / logδ δ[ ] =

d d N d dlog ( ) / log / logλ λ λ[ ] = 0

d N d2 2 0log ( ) / logλ λ[ ] =
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and box dimensions. As an example, the absence of such objective criteria in the choice of their scaling
range could explain the spurious fractal dimensions (Dc < 1) obtained from the 2D behavior of barramundi
fish larvae (Dowling et al., 2001, see their figure 1). Moreover, because it appeared from previous
arguments that Dc ≥ 1 for 2D data, we suggest here that such a result may come from the inclusion of
spurious data points in the regression analysis.

22.4.3 Robustness of Fractal Dimension Estimating Algorithms

Before addressing ecological interpretations of fractal dimensions estimates, further potential limitations
of fractal analysis, intrinsically related to both the compass and the box-counting methods, must be dealt
with. It has been shown that (1) the values L(δ) = Nδ (i.e., compass method, Equation 22.1) may vary
depending on the starting position along the curve (Sugihara and May, 1990), (2) slight reorientations

FIGURE 22.9 Upper (A) and lower (B) limits of the scaling ranges, and related compass and box dimensions (C) obtained
from 3D D. pulex swimming pathways using the R2 – SSR and the zero-slope optimization criteria. The letters “c” and “b”
refer to the compass and box-counting methods, and the subscripts “1” and “2” to the R2 – SSR and the zero-slope
optimization criteria, respectively. The mean   is given within the box (–), the box limits represent , and the outer
limits .
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of the overlying grid can produce different values of N(λ) (i.e., box-counting method, Equation 22.3;
Appleby, 1996), and (3) the values of box dimensions might be positively correlated to a path’s length
(Erlandson and Kostylev, 1995). Consequently, the behaviors of Equations 22.1 and 22.3 will be biased,
as will the subsequent compass and box dimension estimates.

To address the first two issues, distributions of Dc and Db (estimated from 3D swimming paths of
D. pulex) depending on starting point or grid orientation, respectively, are needed. First, we obtained a
distribution of the compass dimension Dc by repeatedly starting the compass procedure at different,
randomly chosen, positions. The resulting compass dimensions D′c,  estimated from ten random starting
positions for each of the nine swimming paths available, do not show significant differences (p > 0.05)
to the compass dimensions Dc estimated using the first point of the paths as a starting point for the
compass algorithm (Figure 22.10A). Second, we obtained a distribution of the box dimension Db from
random replicates of the grid placements in the box-counting algorithm. We rotated the initial 3D
orthogonal grid in 5° increments from α = 0° to α = 45° in the x – y plane and from β = 0° to β = 45°
in the x – z plane. The resulting box dimension estimates D′b  fluctuate smoothly around the mean, and
did not show any significant tendency related to the variations of α and β (Figure 22.10B; Friedman
test, p > 0.05; Siegel and Castellan, 1988).

Finally, the limitation of the box-counting method raised by Erlandson and Kostylev (1995), that the
values of box dimensions might be positively correlated to a path’s length, has been briefly addressed by
comparing the box dimensions obtained from our nine swimming paths of different length (see Table 22.2),
and within each data set between ten randomly chosen subsets of decreasing length. The resulting box

FIGURE 22.10 Distribution of the compass dimensions D ′c  obtained from ten subpathways with randomly chosen starting
positions and the same length within each original 3D swimming pathway of D. pulex, and compared to the compass
dimensions Dc obtained from the original nine swimming pathways (A). Box dimensions D ′b  obtained from a 3D swimming
path of D. pulex using different values of the angles α and β controlling the position of the 3D box-counting grid in the
x – y and x – z planes, respectively (B).

TABLE 22.2

Duration and Number of Data Points Available from Nine Swimming Paths of
Daphnia pulex Used to Illustrate Scale-Dependence and Scale-Independence Concepts

Path N Duration

1 864 1 min 26 s
2 2413 4 min 01 s
3 1892 3 min 09 s
4 1785 2 min 58 s
5 1733 2 min 53 s
6 2277 3 min 48 s
7 1912 3 min 11 s
8 1460 2 min 25 s
9 1479 2 min 28 s
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dimensions Db, however, did not show any significant differences between the nine available 3D paths, nor
between the ten subsets taken within each available 3D path (covariance analysis, F-test, p > 0.05).

These different results then demonstrate the robustness of the compass and the box-counting algorithms
to quantify the structure of Daphnia’s paths in three dimensions. Further, one may also note here that
the compass dimension Dc (Dc = 1.182 ± 0.018: ) and the box dimension Db (Db = 1.178 ±
0.018: ) estimated in the different ways presented in this section cannot be regarded as being
significantly different (Wilcoxon–Mann–Whitney U-test, p > 0.05). Although these results suggest that
these two techniques can be used interchangeably to characterize Daphnia’s paths, we cannot claim their
universality. On the contrary, we stress the need to address this question very carefully in the framework
of any behavioral studies to ensure the reliability of the results.

22.4.4 Two-Dimensional vs. Three-Dimensional Fractal Dimension Estimates

The ability to characterize 3D paths based on 2D projections of these paths is an attractive proposition,
as the reduction in complexity of both the data-gathering equipment and the analysis procedures is
significant. However, the reliability of conclusions based on such a procedure is not clear. Therefore,
we now investigate the consequences of extrapolating fractal dimensions estimated in a 2D framework
to three dimensions by first testing the validity of the extrapolation procedures proposed in the literature
(Morse et al., 1985; Shorrocks et al., 1991; Gunnarsson, 1992). Second, we investigate the potential for
disparity among the fractal dimensions estimated from the three orthogonal 2D projections of a 3D
swimming path and, in doing so, demonstrate the necessity of 3D isotropy of a swimming path as a
prerequisite for extrapolating 2D fractal information into 3D space.

The philosophy behind the extrapolation of 2D fractal estimates to 3D is as follows: Morse et al.
(1985) described a box-counting method for estimating the fractal dimension of vegetation habitats
(2 ≤ D3 ≤ 3, where the subscript 3 indicates a fractal object embedded in a 3D space). Consider now the
problem of estimating the fractal dimension of a tree branch. In principle, a 3D grid system could be
superimposed on the branch and the size of “counting cubes” varied. Such a procedure is impossible to
implement in the field, however, at least given present technical limitations. Morse et al. (1985) simplified
the problem by obtaining a 2D photographic image of the habitat, the fractal dimension of which was
determined using the box-counting method (1 ≤ D2 ≤ 2, where the subscript 2 indicates a fractal object
embedded in a 2D space). Following Mandelbrot (1983), they determined heuristic lower (D3 min = D2 + 1)
and upper (D3 max = 2D2) limits of the “habitat” fractal dimension under the assumption that the photo-
graph is a randomly placed orthogonal plane. This procedure has subsequently been used to estimate
the fractal dimensions of various habitats (e.g., Shorrocks et al., 1991; Gunnarsson, 1992). However, we
stress here, on the basis of both simple theoretical and empirical arguments that the use of this procedure
to characterize 3D animal paths is at best questionable and, at worst, meaningless.

First, the limits of the extrapolated 3D fractal dimension D3 are not constant; instead, they increase
with increasing values of the 2D fractal dimension D2. The disparity between the upper and lower limits
range from 4.76 to 31.03% for values of the 2D fractal dimension, D2, bounded between 1.10 and 1.90,
respectively (Table 22.3). Moreover, for values of D2 greater than 1.5, the upper limit of the extrapolated
fractal dimension D3 is beyond the maximum space-filling limit D3 = 3. Consider now a very complex

TABLE 22.3

Standard Procedure to Extrapolate 2D Fractal Dimensions (D2) to 3D Fractal Dimensions (D2)

D2 D2 + 1 2D2 1R %D3 > 3

1.10 2.10 2.20 4.76 —

Note: D2 + 1 and 2D2 are the lower and the upper limits,
respectively, of the extrapolated 3D fractal dimen-
sions; IR is the percentage of increase between the
lowest and highest limits of the extrapolated 3D
fractal dimensions; and %D3 > 3 is the percentage of
extrapolated 3D fractal dimensions exceeding the
space-filling limit D3 = d = 3.

1.20 2.20 2.40 9.09 —
1.30 2.30 2.60 13.04 —
1.40 2.40 2.80 16.67 —
1.50 2.50 3.00 20.00 —
1.60 2.60 3.20 23.08 33.33
1.70 2.70 3.40 25.93 57.14
1.80 2.80 3.60 28.57 75.00
1.90 2.90 3.80 31.03 88.89

x ± SD
x ± SD
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swimming path recorded in a 2D space such that D2 → 2. In this case, the percentage of D3 values found
beyond the space-filling limit, D3 = 3, unrealistically tends toward 100% (Table 22.3). This can further
be illustrated using the compass dimensions estimated from 2D swimming paths of barramundi fish
larvae, which drops from 1.8 prior metamorphosis to 1.1 following metamorphosis (Dowling et al.,
2000). Extrapolating the fishes’ behavior to three dimensions will lead to reasonable values of D3 for
fish before metamorphosis, . However, for post-metamorphosis fishes, 75% of the D3

values are beyond the space-filling limit, i.e., , and cannot therefore be considered
legitimate. The validity of this extrapolating procedure is then highly questionable, at least in the
framework of behavioral studies. One should nevertheless note here that such extrapolation can only be
considered in the case of 2D records of 3D isotropic swimming paths.

Second, investigations of the fractal dimensions estimated from orthogonal 2D projections of 3D
swimming paths of D. pulex on the x – y, x – z, and y – z planes illustrate further problems. For example,
the fractal dimensions estimated from the x – y, x – z and y – z projections of the same 3D path (D2xy,
D2xz and D2yz, respectively) are always significantly different (Kruskal–Wallis test, p < 0.05). More
specifically, the dimensions D2xz and D2yz (side views) cannot be distinguished, and are both significantly
higher than the dimension D2xy (top view) (Jonckheere test, p > 0.05 and p < 0.05, respectively). This
suggests that the complexity of the vertical components of the D. pulex swimming path is higher than
that of its horizontal components, suggesting that the vertical swimming behavior of D. pulex is more
complex than the horizontal ones. On the other hand, one may note that the average of D2xy, D2yz, and
D2yz is not significantly different from D3 (p > 0.05), due to the intrinsic 3D integrative properties of
Equations 22.1 and 22.3. Finally, as expected following the results presented in the previous paragraph,
the 3D extrapolations of the 2D fractal dimensions D2xy, D2yz, and D2yz are always significantly higher than
the actual 3D fractal dimensions. This has been systematically verified for both compass and box dimen-
sions, estimated in two and three dimensions (Table 22.4). Consequently, it appears that a 2D fractal
dimension is not sufficient to characterize 3D swimming behavior if the swimming path is not isotropic.

TABLE 22.4

Fractal Dimensions Obtained Using Box-Counting and Compass Algorithms from 3D Pathways (D3) and Their 
Three 2D Projections on the x – y, x – z, and y – z Planes, Shown with the Lowest and Highest Limits of the 
3D Dimensions Extrapolated from the 2D Ones

d D N Mean SD SE

Box Dimensions Db

3 D3 9 1.178 0.055 0.018

Note: d is the Euclidean dimension of the considered space; D3 is
the 3D fractal dimension; D2xy, D2xz, and D2yz are the fractal
dimensions estimated from the projections of the 3D path on
the x – y, x – z, and y – z planes, respectively; and D2ij + 1
and 2D2ij are the lowest and highest limits of the 3D fractal
dimensions extrapolated from the fractal dimensions D2ij, es-
timated from paths in the i – j plane.

2 D2xy 9 1.114 0.046 0.015
3e D2xy + 1 9 2.114 1.046 1.015
3e 2D2xy 9 2.228 0.092 0.03
2 D2xz 9 1.214 0.051 0.017
3e Dxz + 1 9 2.214 1.051 1.017
3e 2D2xz 9 2.428 0.102 0.034
2 D2yz 9 1.199 0.067 0.022
3e D2yz + 1 9 2.199 1.067 1.022
3e 2D2yz 9 2.398 0.134 0.044

Compass Dimensions Dc

3 D3 9 1.182 0.057 0.018
2 D2xy 9 1.123 0.048 0.016
3e D2xy + 1 9 2.123 1.048 1.016
3e 2D2xy 9 2.246 0.096 0.032
2 D2xz 9 1.221 0.052 0.017
3e Dxz + 1 9 2.221 1.052 1.017
3e 2D2xz 9 2.442 0.104 0.035
2 D2yz 9 1.225 0.062 0.020
3e D2yz + 1 9 2.225 1.062 1.020
3e 2D2yz 9 2.45 0.124 0.041

D3 2 10 2 20∈ −[ ]. .
D3 2 80 3 60∈ −[ ]. .
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We also note the seemingly paradoxical result that fractal dimensions estimated from 3D paths are
always significantly smaller than 2, the expected lower bound of values for objects embedded in a 3D
space. Indeed, following basic fractal theory, an object embedded in a d-dimensional space should have
a fractal dimension bounded between d – 1 and d (e.g., Mandelbrot, 1983; Schroeder, 1991). In view
of this, a linear succession of spaced dust particles will have a dimension bounded between 0 and 1 as
they occupy a fraction of the available space greater than a single point (dimension 0), and lower than
a line (dimension 1). Similarly, a convoluted curve, a coastline, for example, will occupy a fraction of
space between a line (dimension 1) and a surface (dimension 2), while the dimension of a tree will be
bounded between 2 (a surface) and 3 (a volume). Now consider again the case of movement paths. The
path of an ant foraging on a flat surface occupies a fraction of 2D space. Its dimension is then bounded
between 1 (a perfectly linear path) and 2 (a plane-filling path). Similarly, the swimming path of D. pulex
is obviously embedded in a 3D space, the volume of water (cf. Figure 22.1). However, it does not present
a 3D branching structure as does a tree, and each change of direction occurs within a 2D space. Therefore,
even in 3D space, a zooplankton swimming path, or the flying path of a foraging bee, will intrinsically
remain a convoluted 2D curve. The fractal dimensions of swimming paths are then bounded between a
one-dimensional space (i.e., a line, D = 1) and a 2D space (i.e., a surface, D = 2). The practical consequence
of this specific property of swimming paths is to call into question the validity of previous reports of
fractal dimensions that fall beyond the 1 ≤ D ≤ 2 limits discussed above for both 2D — Dc < 1 (Dowling
et al., 2000) and Dc > 2 (Bascompte and Vilà, 1997)  and 3D (Dc > 2; Coughlin et al., 1992) analyses.
As suggested above, these discrepancies might result from of the lack of some objective procedures to
identify the scaling ranges and the subsequent fractal dimensions of movement paths. Considering this,
we note that all of the fractal dimensions estimated from D. pulex paths were always consistently
significantly higher than 1 (linear movement, p < 0.01) and lower than 2 (Brownian motion, p < 0.01).

22.5 Comparing Zooplankton Behavior with the Structure
of Their Surrounding Environment

In light of the growing awareness of the scaling nature of marine ecosystems, in both their physical
and biological aspects (e.g., Pascual et al., 1995; Seuront and Lagadeuc, 1997, 1998, 2001; Seuront et
al., 1996a, b, 1999, 2002; Seuront and Schmitt, 2001; Lovejoy et al., 2001), it is becoming increasingly
necessary to find a way to compare the composition of zooplankton swimming behaviors in relation
to phytoplankton distributions. In particular, considering the remote sensing ability of zooplankton,
their behavior could be strongly influenced by the distribution of their phytoplanktonic prey. Ultimately,
knowledge of the precise nature of zooplankton swimming behavior could then be a way to infer the
spatial distribution of prey. However, due primarily to technological limitations, it is not yet possible
to obtain 3D microscale (i.e., scales smaller than 1 m) distributions of phytoplankton cells in situ. On
the other hand, it is currently possible to obtain prolonged, simultaneous one-dimensional records (i.e.,
vertical profiles and time series) of physical (shear, temperature, salinity) and biological (in vivo
fluorescence, backscatter) parameters at scales below 1 m (see, e.g., Wolk et al., 2001). From such
records, one may expect a one-dimensional fractal dimension of phytoplankton distribution D = 0.67
(Seuront and Lagadeuc, 1997; Seuront et al., 2002). In the present study, we found a 3D fractal
dimension D = 1.18 (Table 22.4) for D. pulex swimming behavior. Unfortunately, a direct comparison
of these two dimensions is not possible because they characterize two processes embedded in different
dimensions (Roy et al., 1987; Huang and Turcotte, 1989). We nevertheless propose here a more
fundamental framework, the fractal codimension, which makes possible comparisons of the structure
of processes embedded in different d-dimensional spaces. The fractal codimension c has been defined
as (Seuront, 1998; Seuront et al., 1999):

(22.8)

where d is the Euclidean dimension of the embedding space and D the fractal dimension of a given process.
The fractal codimension, then, measures the fraction of the dimensional space occupied by the process of

c d D= −
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interest, and is bounded between c = 0 and c = 1 for “standard” processes characterized by a fractal
dimension D such as d – 1 ≤ D ≤ d. Because the fractal dimension D of swimming paths is intrinsically
bounded between 1 ≤ D ≤ 2, whatever the value of the embedded dimension d, for more generality we
can consider a fractal codimension bounded between c = 0 and c = d. However, in such a framework,
comparisons of codimensions estimated from processes embedded in different d-dimensional space are
unfeasible without a priori knowledge of the embedding dimension d. The fractal codimension subsequently
provides only a relative measure of sparseness. We therefore introduce here the “path codimension” c′:

(22.9)

as an absolute measure of sparseness. c′ is bounded between c′ = 0 for space-filling processes, and c′ = 1
for processes so sparse that their fractal dimension is nil, whatever the values of the original embedding
dimensions d may be. Returning to the example above, the path codimensions of phytoplankton distribu-
tion and D. pulex behavior are c′ = 0.33 and c′ = 0.61, respectively. Thus, the swimming behavior of
D. pulex appears to be less complex, or less space filling, than the distribution of its phytoplankton
fodder. In particular, this result fully agrees with studies demonstrating the differences in motility between
predators and prey (e.g., Tiselius et al., 1993, 1997; Seuront and Lagadeuc, 2001). In general, the path
codimension provides a method of comparing the complexity of two interrelated processes, each of
which may be embedded in a different dimensional space.

22.6 Conclusion

In this chapter, we have discussed the basic concepts and methods related to the fractal framework, and
subsequently attempted to address the major issues related to the applicability of fractal analysis in
behavioral ecology. We have tried to clarify some problematic aspects of behavioral fractal analysis, and
we propose that the following recommendations are fundamental requirements for improving the robust-
ness of fractal analyses, which in turn ensures that their interpretation will be meaningful:

1. The key component of fractal analysis is not that the fractal dimension D is a scale-independent
parameter. Alternatively, we argue that the potential scale dependence of fractal dimensions
over finite ranges of scales may contain more information, both in terms of driving processes
and sampling limitation, than its scale dependence over a hypothetical infinite range of scales.
To ensure the relevance of fractal analysis, the key issue is related to a proper estimation of
the scaling range.

2. Considering the lack of objective criteria for testing the existence of scaling properties in animal
paths, we present two complementary, easy to implement, robust, and statistically sound proce-
dures to identify scaling properties and estimate fractal dimensions. More generally, we strongly
recommend use of a combination of two optimization criteria to identify a scaling range.

3. We address the major objections proposed against the use of fractal analyses in ecology and
demonstrate, using a series of simple testing procedures, their robustness in estimating the
fractal dimensions of animal paths.

4. In an investigation of the 2D and 3D fractal properties of paths, we emphasize some intrinsic
geometric properties of movement paths, and stress the need to ensure their 3D isotropy. This
can be done only by comparing the fractal dimension of the three 2D projections of a 3D path.

5. We introduce a new metric, the “path codimension,” which can be used to compare the absolute
sparseness of related processes that are embedded in different d-dimensional spaces.

However, the main purpose of the chapter has been to confirm the ability of fractal methods to
provide both qualitative and quantitative characterizations of animal paths in 2D and 3D environ-
ments. Subsequently, considering the ubiquitous geometrical nature of animal movements, we believe
that our approach can be generalized to the behavior of all moving organisms. However, we emphasize
that the conclusions drawn here, essentially on the robustness of fractal dimension estimates, should

′ =c c d
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not be generalized to other fractal objects such as the structure of landscape heterogeneity or
vegetation branching processes without preliminary, careful investigations of the properties of the
algorithms involved.

We have illustrated all the concepts discussed above by applying this fractal framework to the study
of 3D swimming behavior of the water flea Daphnia pulex. The subsequent results, while only at their
preliminary stage, nevertheless have generated several salient implications for our understanding of
structures and functions in marine ecosystems:

1. Because individual swimming behavior is the underlying mechanism generating population-
level behaviors such as horizontal and vertical migration, the horizontal–vertical disparity in
D. pulex swimming behavior may reflect an adaptive reminiscence of diel vertical migration
as a predator avoidance strategy (Loose, 1992; Loose et al., 1992). The difference in fractal
behavior identified in the horizontal and the vertical planes may also be suggested as a basis
to investigate the predation risk associated with differential swimming behavior related to
mating, feeding, or predator avoidance strategies. Fractal evaluation of 2D coordinates of 3D
swimming paths is thus particularly useful in this context. Depending on the relative velocities
of predator and prey, a swimming behavior characterized by a high fractal dimension may
imply a high encounter probability with predators, relative to a more linear swimming path.
In addition, a high fractal dimension may also imply a higher encounter probability with prey,
depending on the foraging strategy employed (e.g., an ambush or saltatory search predator will
have a higher fractal dimension swimming path with an increased level of prey).

2. Individual behavior affects the outcome of predator–prey interactions, especially in the pelagic
environment, where prey movement is important both as a cue to predators (Brewer and
Coughlin, 1995) and a determinant of encounter rate (Gerritsen and Strickler, 1977). Moreover,
the distribution of prey organisms is very important for predators, as recently investigated
numerically (Seuront, 2001; Seuront et al., 2001), because food availability changes depending
on the fractal dimension. Low fractal dimensions indicate a smooth and predictable distribution
of particles gathered in small numbers of patches, whereas high fractal dimensions indicate
rough, fragmented, space-filling, and less predictable distributions. Therefore, when a predator
can remotely detect its surroundings, prey distributions with low dimension should be more
efficient. In contrast, when a predator has no remote detection ability, prey distributions with
high dimension should be preferable, because available food quantity or encounter rate becomes
proportional to the searched volume as fractal dimension increases. The comparison of the
fractal nature of plankton swimming behavior and plankton distributions will then increase our
understanding of zooplankton trophodynamics. For example, Johnson et al. (1992b) discussed
the interaction between animal movement characteristics and the patch-boundary features in a
“microlandscape.” They argued that such interactions have important spatial consequences on
gene flow, population dynamics, and other ecological processes in the community (see also
Wiens et al., 1995). In the ocean, which is increasingly regarded as a “seascape” considering
the growing awareness of the heterogeneous nature of microscale processes, behavioral studies
would be of prime interest to improve our understanding of the functioning of marine eco-
systems from a bottom-up view (Seuront, 2001; Seuront et al., 2001). Although such information
is not yet available, we believe that the quickly advancing technology (e.g., Wolk et al., 2002;
Franks and Jaffe, 2001) will ensure the achievement of this goal in the near future.

3. Individual feeding rate may be linked to swimming behavior; in most zooplankton, some of
the same appendages are used for both behaviors. Considering the actual evidence for prey
switching behavior (e.g., Kiørboe et al., 1996; Caparroy et al., 1998), fractal analysis may be
suggested as a diagnostic framework to access the kind of prey zooplankton preferentially feed
on in a plurispecific prey assemblage. On the other hand, swimming behavior differs among
species (Tiselius and Jonsson, 1990) and among development stages within a species (van Duren
and Videler, 1995). Attempts at modeling the grazing pressure resulting from both mono- or
plurispecific zooplankton assemblages could then benefit from an incorporation of potential
differences in swimming path complexity. For example, in a comparison of path tortuosity in
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three species of grasshopper, With (1994a) found that the path fractal dimension of the largest
species was smaller than those of the two smaller species. She suggested that this reflects the
fact that smaller species interact with the habitat at a finer scale of resolution than do larger
species. In a second study, With (1994b) found differences in the ways that gomphocerine
grasshopper nymphs and adults interacted with the microlandscape. Similarly, the knowledge
of the precise nature of the swimming behavior has been suggested as a way to infer the spatial
distribution of foragers (Turchin, 1991; Seuront and Lagadeuc, 2001).

4. Toxic chemicals (whether natural, such as cyanobacterial toxins, or anthropogenic, such as
pesticides) can have indirect effects on the entire pelagic community via effects on individual
swimming behavior (Dodson et al., 1995). The demonstrated sensitivity of fractal analysis may
then provide an efficient framework to use the swimming behavior of Daphnia, or some other
zooplankton organisms, as a “living toxicometer.”

5. Finally, we stress here that an important consequence of the fractal nature of zooplankton
swimming behavior, illustrated here using 3D D. pulex paths, is its deviation from Brownian
motion. Fractional Brownian motion models (Mandelbrot, 1983; Schroeder, 1991) have been
suggested to characterize the movement of organisms (Frontier, 1987). However, Wiens and
Milne (1989), examining beetle movements in natural fractal landscapes, found that observed
beetle movements deviated from the modeled (fractional Brownian) ones. A follow-up study by
Johnson et al. (1992a) found that beetle movements reflect a combination of ordinary (random)
and anomalous diffusions. The latter may simply reflect intrinsic departures from randomness,
or result from barrier avoidance and utilization of corridors in natural landscapes. An extensive
discussion of the anomalous diffusion of a copepod in a heterogeneous environment can be
found elsewhere (Marguerit et al., 1998; Schmitt and Seuront, 2001). Future modeling attempts
of zooplankton swimming behavior may have to take into account the nonrandomness
(i.e., fractal) of organisms’ movements, and the persistence of the direction of travel
(cf. Figure 22.3A), as recently suggested by Wu et al. (2000) and Schmitt and Seuront (2001).

This chapter has highlighted areas concerning the valid applications of fractal analysis so that it can
be used to faithfully represent the ecological effect of plankton behavior as is found in aquatic systems.
This precision should be a fundamental requirement for integrated behavioral components in plankton
models (Seuront, 2001; Seuront et al., 2001; Ginot et al., 2002; Yamazaki and Kamykowski, Chapter
35, this volume; Souissi and Bernard, Chapter 23, this volume) in order for their results to be ecologically
relevant. Whatever the case, the understanding of zooplankton ecology from the behavioral bottom-up
approach is still in its infancy.
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